ﻻ يوجد ملخص باللغة العربية
The ruthenium halide $alpha$-RuCl$_{3}$ is a promising candidate for a Kitaev spin liquid. However, the microscopic model describing $alpha$-RuCl$_{3}$ is still debated partly because of a lack of analogue materials for $alpha$-RuCl$_{3}$, which prevents tracking of electronic properties as functions of controlled interaction parameters. Here, we report a successful synthesis of RuBr$_{3}$. The material RuBr$_{3}$~possesses BiI$_3$-type structure (space group: $Roverline{3}$) where Ru$^{3+}$ form an ideal honeycomb lattice. Although RuBr$_{3}$ has a negative Weiss temperature, it undergoes a zigzag antiferromagnetic transition at $T_mathrm{N}=34$ K, as does $alpha$-RuCl$_{3}$. Our analyses indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium trihalides by changing the ligand sites, which provides a new platform for exploring Kitaev spin liquids.
We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From
Anyonic excitations emerging from a Kitaev spin liquid can form a basis for quantum computers. Searching for such excitations motivated intense research on the honeycomb iridate materials. However, access to a spin liquid ground state has been hinder
We use the constrained random phase approximation (cRPA) to derive from first principles the Ru-$t_{2g}$ Wannier function based model for the Kitaev spin-liquid candidate material $alpha$-RuCl$_3$. We find the non-local Coulomb repulsion to be sizabl
We present magnetization measurements on polycrystalline $beta$-Li$_2$IrO$_3$ under hydrostatic pressures up to 3 GPa and construct the temperature-pressure phase diagram of this material. The magnetically ordered phase with $T_{rm{N}}simeq 38$ K bre
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in top