ترغب بنشر مسار تعليمي؟ اضغط هنا

Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

73   0   0.0 ( 0 )
 نشر من قبل Qing-Long Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an efficient saliency map generation method, called Group score-weighted Class Activation Mapping (Group-CAM), which adopts the split-transform-merge strategy to generate saliency maps. Specifically, for an input image, the class activations are firstly split into groups. In each group, the sub-activations are summed and de-noised as an initial mask. After that, the initial masks are transformed with meaningful perturbations and then applied to preserve sub-pixels of the input (i.e., masked inputs), which are then fed into the network to calculate the confidence scores. Finally, the initial masks are weighted summed to form the final saliency map, where the weights are confidence scores produced by the masked inputs. Group-CAM is efficient yet effective, which only requires dozens of queries to the network while producing target-related saliency maps. As a result, Group-CAM can be served as an effective data augment trick for fine-tuning the networks. We comprehensively evaluate the performance of Group-CAM on common-used benchmarks, including deletion and insertion tests on ImageNet-1k, and pointing game tests on COCO2017. Extensive experimental results demonstrate that Group-CAM achieves better visual performance than the current state-of-the-art explanation approaches. The code is available at https://github.com/wofmanaf/Group-CAM.

قيم البحث

اقرأ أيضاً

We propose a technique for producing visual explanations for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concep t, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a stronger nodel from a weaker one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo at http://gradcam.cloudcv.org, and a video at youtu.be/COjUB9Izk6E.
In this paper, we study a discriminatively trained deep convolutional network for the task of visual tracking. Our tracker utilizes both motion and appearance features that are extracted from a pre-trained dual stream deep convolution network. We sho w that the features extracted from our dual-stream network can provide rich information about the target and this leads to competitive performance against state of the art tracking methods on a visual tracking benchmark.
Visualizing the features captured by Convolutional Neural Networks (CNNs) is one of the conventional approaches to interpret the predictions made by these models in numerous image recognition applications. Grad-CAM is a popular solution that provides such a visualization by combining the activation maps obtained from the model. However, the average gradient-based terms deployed in this method underestimates the contribution of the representations discovered by the model to its predictions. Addressing this problem, we introduce a solution to tackle this issue by computing the path integral of the gradient-based terms in Grad-CAM. We conduct a thorough analysis to demonstrate the improvement achieved by our method in measuring the importance of the extracted representations for the CNNs predictions, which yields to our methods administration in object localization and model interpretation.
Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this paper we propose Param etric Continuous Convolution, a new learnable operator that operates over non-grid structured data. The key idea is to exploit parameterized kernel functions that span the full continuous vector space. This generalization allows us to learn over arbitrary data structures as long as their support relationship is computable. Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes, and lidar motion estimation of driving scenes.
Group convolution, which divides the channels of ConvNets into groups, has achieved impressive improvement over the regular convolution operation. However, existing models, eg. ResNeXt, still suffers from the sub-optimal performance due to manually d efining the number of groups as a constant over all of the layers. Toward addressing this issue, we present Groupable ConvNet (GroupNet) built by using a novel dynamic grouping convolution (DGConv) operation, which is able to learn the number of groups in an end-to-end manner. The proposed approach has several appealing benefits. (1) DGConv provides a unified convolution representation and covers many existing convolution operations such as regular dense convolution, group convolution, and depthwise convolution. (2) DGConv is a differentiable and flexible operation which learns to perform various convolutions from training data. (3) GroupNet trained with DGConv learns different number of groups for different convolution layers. Extensive experiments demonstrate that GroupNet outperforms its counterparts such as ResNet and ResNeXt in terms of accuracy and computational complexity. We also present introspection and reproducibility study, for the first time, showing the learning dynamics of training group numbers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا