ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition of the monotonicity assumption in learning local average treatment effects

189   0   0.0 ( 0 )
 نشر من قبل Yinchu Zhu
 تاريخ النشر 2021
  مجال البحث اقتصاد
والبحث باللغة English
 تأليف Yinchu Zhu




اسأل ChatGPT حول البحث

We consider the setting in which a strong binary instrument is available for a binary treatment. The traditional LATE approach assumes the monotonicity condition stating that there are no defiers (or compliers). Since this condition is not always obvious, we investigate the sensitivity and testability of this condition. In particular, we focus on the question: does a slight violation of monotonicity lead to a small problem or a big problem? We find a phase transition for the monotonicity condition. On one of the boundary of the phase transition, it is easy to learn the sign of LATE and on the other side of the boundary, it is impossible to learn the sign of LATE. Unfortunately, the impossible side of the phase transition includes data-generating processes under which the proportion of defiers tends to zero. This boundary of phase transition is explicitly characterized in the case of binary outcomes. Outside a special case, it is impossible to test whether the data-generating process is on the nice side of the boundary. However, in the special case that the non-compliance is almost one-sided, such a test is possible. We also provide simple alternatives to monotonicity.

قيم البحث

اقرأ أيضاً

81 - Baoluo Sun , Zhiqiang Tan 2020
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es timated through regression models, such as instrument propensity score and treatment and outcome regression models. We develop a computationally tractable method in high-dimensional settings where the numbers of regression terms are close to or larger than the sample size. Our method exploits regularized calibrated estimation, which involves Lasso penalties but carefully chosen loss functions for estimating coefficient vectors in these regression models, and then employs a doubly robust estimator for the treatment parameter through augmented inverse probability weighting. We provide rigorous theoretical analysis to show that the resulting Wald confidence intervals are valid for the treatment parameter under suitable sparsity conditions if the instrument propensity score model is correctly specified, but the treatment and outcome regression models may be misspecified. For existing high-dimensional methods, valid confidence intervals are obtained for the treatment parameter if all three models are correctly specified. We evaluate the proposed methods via extensive simulation studies and an empirical application to estimate the returns to education.
Consider a planner who has to decide whether or not to introduce a new policy to a certain local population. The planner has only limited knowledge of the policys causal impact on this population due to a lack of data but does have access to the publ icized results of intervention studies performed for similar policies on different populations. How should the planner make use of and aggregate this existing evidence to make her policy decision? Building upon the paradigm of `patient-centered meta-analysis proposed by Manski (2020; Towards Credible Patient-Centered Meta-Analysis, Epidemiology), we formulate the planners problem as a statistical decision problem with a social welfare objective pertaining to the local population, and solve for an optimal aggregation rule under the minimax-regret criterion. We investigate the analytical properties, computational feasibility, and welfare regret performance of this rule. We also compare the minimax regret decision rule with plug-in decision rules based upon a hierarchical Bayes meta-regression or stylized mean-squared-error optimal prediction. We apply the minimax regret decision rule to two settings: whether to enact an active labor market policy given evidence from 14 randomized control trial studies; and whether to approve a drug (Remdesivir) for COVID-19 treatment using a meta-database of clinical trials.
Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions necessary for identifying CATE are estimated b y machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. We consider two variants of the estimator depending on whether the nuisance functions are estimated over the full sample or over a hold-out sample. Building on Belloni at al. (2017) and Chernozhukov et al. (2018), we derive functional limit theory for the estimators and provide an easy-to-implement procedure for uniform inference based on the multiplier bootstrap. The empirical application revisits the effect of maternal smoking on a babys birth weight as a function of the mothers age.
This paper discusses the problem of estimation and inference on the effects of time-varying treatment. We propose a method for inference on the effects treatment histories, introducing a dynamic covariate balancing method combined with penalized regr ession. Our approach allows for (i) treatments to be assigned based on arbitrary past information, with the propensity score being unknown; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) high-dimensional covariates; (iv) heterogeneity of treatment effects. We study the asymptotic properties of the estimator, and we derive the parametric convergence rate of the proposed procedure. Simulations and an empirical application illustrate the advantage of the method over state-of-the-art competitors.
108 - Ruoqi Yu , Shulei Wang 2020
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based $U$-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا