ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic covariate balancing: estimating treatment effects over time

129   0   0.0 ( 0 )
 نشر من قبل Davide Viviano Mr.
 تاريخ النشر 2021
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the problem of estimation and inference on the effects of time-varying treatment. We propose a method for inference on the effects treatment histories, introducing a dynamic covariate balancing method combined with penalized regression. Our approach allows for (i) treatments to be assigned based on arbitrary past information, with the propensity score being unknown; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) high-dimensional covariates; (iv) heterogeneity of treatment effects. We study the asymptotic properties of the estimator, and we derive the parametric convergence rate of the proposed procedure. Simulations and an empirical application illustrate the advantage of the method over state-of-the-art competitors.



قيم البحث

اقرأ أيضاً

We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g . teacher value-added) with observational data. We show that, unlike with a single binary treatment, these regressions do not generally estimate convex averages of causal effects-even when the treatments are conditionally randomly assigned and the controls fully address omitted variables bias. We discuss different solutions to this issue, and propose as a solution anew class of efficient estimators of weighted average treatment effects.
Datasets from field experiments with covariate-adaptive randomizations (CARs) usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation and inference of unconditional QTEs under CARs. We establish the consistency, limiting distribution, and validity of the multiplier bootstrap of the regression-adjusted QTE estimator. The auxiliary regression may be estimated parametrically, nonparametrically, or via regularization when the data are high-dimensional. Even when the auxiliary regression is misspecified, the proposed bootstrap inferential procedure still achieves the nominal rejection probability in the limit under the null. When the auxiliary regression is correctly specified, the regression-adjusted estimator achieves the minimum asymptotic variance. We also derive the optimal pseudo true values for the potentially misspecified parametric model that minimize the asymptotic variance of the corresponding QTE estimator. We demonstrate the finite sample performance of the new estimation and inferential methods using simulations and provide an empirical application to a well-known dataset in education.
In non-experimental settings, the Regression Discontinuity (RD) design is one of the most credible identification strategies for program evaluation and causal inference. However, RD treatment effect estimands are necessarily local, making statistical methods for the extrapolation of these effects a key area for development. We introduce a new method for extrapolation of RD effects that relies on the presence of multiple cutoffs, and is therefore design-based. Our approach employs an easy-to-interpret identifying assumption that mimics the idea of common trends in difference-in-differences designs. We illustrate our methods with data on a subsidized loan program on post-education attendance in Colombia, and offer new evidence on program effects for students with test scores away from the cutoff that determined program eligibility.
188 - Yinchu Zhu 2021
We consider the setting in which a strong binary instrument is available for a binary treatment. The traditional LATE approach assumes the monotonicity condition stating that there are no defiers (or compliers). Since this condition is not always obv ious, we investigate the sensitivity and testability of this condition. In particular, we focus on the question: does a slight violation of monotonicity lead to a small problem or a big problem? We find a phase transition for the monotonicity condition. On one of the boundary of the phase transition, it is easy to learn the sign of LATE and on the other side of the boundary, it is impossible to learn the sign of LATE. Unfortunately, the impossible side of the phase transition includes data-generating processes under which the proportion of defiers tends to zero. This boundary of phase transition is explicitly characterized in the case of binary outcomes. Outside a special case, it is impossible to test whether the data-generating process is on the nice side of the boundary. However, in the special case that the non-compliance is almost one-sided, such a test is possible. We also provide simple alternatives to monotonicity.
Inverse probability of treatment weighting (IPTW) is a popular method for estimating the average treatment effect (ATE). However, empirical studies show that the IPTW estimators can be sensitive to the misspecification of the propensity score model. To address this problem, researchers have proposed to estimate propensity score by directly optimizing the balance of pre-treatment covariates. While these methods appear to empirically perform well, little is known about how the choice of balancing conditions affects their theoretical properties. To fill this gap, we first characterize the asymptotic bias and efficiency of the IPTW estimator based on the Covariate Balancing Propensity Score (CBPS) methodology under local model misspecification. Based on this analysis, we show how to optimally choose the covariate balancing functions and propose an optimal CBPS-based IPTW estimator. This estimator is doubly robust; it is consistent for the ATE if either the propensity score model or the outcome model is correct. In addition, the proposed estimator is locally semiparametric efficient when both models are correctly specified. To further relax the parametric assumptions, we extend our method by using a sieve estimation approach. We show that the resulting estimator is globally efficient under a set of much weaker assumptions and has a smaller asymptotic bias than the existing estimators. Finally, we evaluate the finite sample performance of the proposed estimators via simulation and empirical studies. An open-source software package is available for implementing the proposed methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا