ﻻ يوجد ملخص باللغة العربية
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based $U$-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es
Causal effect sizes may vary among individuals and they can even be of opposite directions. When there exists serious effect heterogeneity, the population average causal effect (ACE) is not very informative. It is well-known that individual causal ef
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many random
We extend balloon and sample-smoothing estimators, two types of variable-bandwidth kernel density estimators, by a shift parameter and derive their asymptotic properties. Our approach facilitates the unified study of a wide range of density estimator
The empirical literature on program evaluation limits its scope almost exclusively to models where treatment effects are homogenous for observationally identical individuals. This paper considers a treatment effect model in which treatment effects ma