ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quantum Gravity Disk: Discrete Current Algebra

275   0   0.0 ( 0 )
 نشر من قبل Christophe Goeller
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantization of the corner symmetry algebra of 3d gravity associated with 1d spatial boundaries. We first recall that in the continuum, this symmetry algebra is given by the central extension of the Poincare loop algebra. At the quantum level, we construct a discrete current algebra with a $mathcal{D}mathrm{SU}(2)$ quantum symmetry group that depends on an integer $N$. This algebra satisfies two fundamental properties: First it is compatible with the quantum space-time picture given by the Ponzano-Regge state-sum model, which provides a path integral amplitudes for 3d loop quantum gravity. We then show that we recover in the $Nrightarrowinfty$ limit the central extension of the Poincare current algebra. The number of boundary edges defines a discreteness parameter $N$ which counts the number of flux lines attached to the boundary. We analyse the refinement, coarse-graining and fusion processes as $N$ changes. Identifying a discrete current algebra on quantum boundaries is an important step towards understanding how conformal field theories arise on spatial boundaries in loop quantum gravity. It also shows how an asymptotic BMS symmetry group could appear from the continuum limit of 3d quantum gravity.



قيم البحث

اقرأ أيضاً

Gravity theory based on current algebra is formulated. The gauge principle rather than the general covariance combined with the equivalence principle plays the pivotal role in the formalism, and the latter principles are derived as a consequence of t he theory. In this approach, it turns out that gauging the Poincare algebra is not appropriate but gauging the $SO(N,M)$ algebra gives a consistent theory. This makes it possible to have Anti-de Sitter and de Sitter space-time by adopting a relation between the spin connection and the tetrad field. The Einstein equation is a part of our basic equation for gravity which is written in terms of the spin connection. When this formalism is applied to the $E(11)$ algebra in which the three-form antisymmetric tensor is a part of gravity multiplet, we have a current algebra gravity theory based on M-theory to be applied to cosmology in its classical limit. Without introducing any other ad-hoc field, we can obtain accelerating universe in the manner of the inflating universe at its early stage.
In theories with discrete Abelian gauge groups, requiring that black holes be able to lose their charge as they evaporate leads to an upper bound on the product of a charged particles mass and the cutoff scale above which the effective description of the theory breaks down. This suggests that a non-trivial version of the Weak Gravity Conjecture (WGC) may also apply to gauge symmetries that are discrete, despite there being no associated massless field, therefore pushing the conjecture beyond the slogan that `gravity is the weakest force. Here, we take a step towards making this expectation more precise by studying $mathbb{Z}_N$ and $mathbb{Z}_2^N$ gauge symmetries realised via theories of spontaneous symmetry breaking. We show that applying the WGC to a dual description of an Abelian Higgs model leads to constraints that allow us to saturate but not violate existing bounds on discrete symmetries based on black hole arguments. In this setting, considering the effect of discrete hair on black holes naturally identifies the cutoff of the effective theory with the scale of spontaneous symmetry breaking, and provides a mechanism through which discrete hair can be lost without modifying the gravitational sector. We explore the possible implications of these arguments for understanding the smallness of the weak scale compared to $M_{Pl}$.
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in cluding the construction of traversable wormholes, the existence of a family of $SL(2,mathbb{R})$ algebras acting on the matter fields, and the calculation of the scrambling time, can be recast as simple consequences of this algebra. We also use it to clarify the question of when the creation of an excitation deep in the bulk increases or decreases the boundary energy, which is of crucial importance for the typical state
We investigate the ultraviolet behaviour of quantum gravity within a functional renormalisation group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. T he latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a non-trivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalisation group flows. We show that momentum locality of graviton correlation functions is non-trivially linked to diffeomorphism invariance, and is realised in the present setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا