ﻻ يوجد ملخص باللغة العربية
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
In theories with discrete Abelian gauge groups, requiring that black holes be able to lose their charge as they evaporate leads to an upper bound on the product of a charged particles mass and the cutoff scale above which the effective description of
In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dua
We present a construction of $kappa$-deformed complex scalar field theory with the objective of shedding light on the way discrete symmetries and CPT invariance are affected by the deformation. Our starting point is the observation that, in order to
It is possible that relativistic symmetries become deformed in the semiclassical regime of quantum gravity. Mathematically, such deformations lead to the noncommutativity of spacetime geometry and non-vanishing curvature of momentum space. The best s
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole