ﻻ يوجد ملخص باللغة العربية
Gravity theory based on current algebra is formulated. The gauge principle rather than the general covariance combined with the equivalence principle plays the pivotal role in the formalism, and the latter principles are derived as a consequence of the theory. In this approach, it turns out that gauging the Poincare algebra is not appropriate but gauging the $SO(N,M)$ algebra gives a consistent theory. This makes it possible to have Anti-de Sitter and de Sitter space-time by adopting a relation between the spin connection and the tetrad field. The Einstein equation is a part of our basic equation for gravity which is written in terms of the spin connection. When this formalism is applied to the $E(11)$ algebra in which the three-form antisymmetric tensor is a part of gravity multiplet, we have a current algebra gravity theory based on M-theory to be applied to cosmology in its classical limit. Without introducing any other ad-hoc field, we can obtain accelerating universe in the manner of the inflating universe at its early stage.
We study the quantization of the corner symmetry algebra of 3d gravity associated with 1d spatial boundaries. We first recall that in the continuum, this symmetry algebra is given by the central extension of the Poincare loop algebra. At the quantum
We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor. Our approach allows a unified treatment of various subcases and an easy identification of the degrees of freedom of the theory.
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in
We reformulate boundary conditions for axisymmetric codimension-2 braneworlds in a way which is applicable to linear perturbation with various gauge conditions. Our interest is in the thin brane limit and thus this scheme assumes that the perturbatio
The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstei