ﻻ يوجد ملخص باللغة العربية
The diffusion system with time-fractional order derivative is of great importance mathematically due to the nonlocal property of the fractional order derivative, which can be applied to model the physical phenomena with memory effects. We consider an initial-boundary value problem for the time-fractional diffusion equation with inhomogenous Robin boundary condition. Firstly, we show the unique existence of the weak/strong solution based on the eigenfunction expansions, which ensures the well-posedness of the direct problem. Then, we establish the Hopf lemma for time-fractional diffusion operator, generalizing the counterpart for the classical parabolic equation. Based on this new Hopf lemma, the maximum principles for this time-fractional diffusion are finally proven, which play essential roles for further studying the uniqueness of the inverse problems corresponding to this system.
In this paper, we study the asymptotic estimate of solution for a mixed-order time-fractional diffusion equation in a bounded domain subject to the homogeneous Dirichlet boundary condition. Firstly, the unique existence and regularity estimates of so
The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construc
Let $M$ be a smooth manifold with boundary $partial M$ and bounded geometry, $partial_D M subset partial M$ be an open and closed subset, $P$ be a second order differential operator on $M$, and $b$ be a first order differential operator on $partial M
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensiv