ترغب بنشر مسار تعليمي؟ اضغط هنا

The strong Legendre condition and the well-posedness of mixed Robin problems on manifolds with bounded geometry

76   0   0.0 ( 0 )
 نشر من قبل Bernd Ammann
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $M$ be a smooth manifold with boundary $partial M$ and bounded geometry, $partial_D M subset partial M$ be an open and closed subset, $P$ be a second order differential operator on $M$, and $b$ be a first order differential operator on $partial M smallsetminus partial_D M$. We prove the regularity and well-posedness of the mixed Robin boundary value problem $$Pu = f mbox{ in } M, u = 0 mbox{ on } partial_D M, partial^P_ u u + bu = 0 mbox{ on } partial M setminus partial_D M$$ under some natural assumptions. Our operators act on sections of a vector bundle $E to M$ with bounded geometry. Our well-posedness result is in the Sobolev spaces $H^s(M; E)$, $s geq 0$. The main novelty of our results is that they are formulated on a non-compact manifold. We include also some extensions of our main result in different directions. First, the finite width assumption is required for the Poincar{e} inequality on manifolds with bounded geometry, a result for which we give a new, more general proof. Second, we consider also the case when we have a decomposition of the vector bundle $E$ (instead of a decomposition of the boundary). Third, we also consider operators with non-smooth coefficients, but, in this case, we need to limit the range of $s$. Finally, we also consider the case of uniformly strongly elliptic operators. In this case, we introduce a emph{uniform Agmon condition} and show that it is equivalent to the Gaa rding inequality. This extends an important result of Agmon (1958).



قيم البحث

اقرأ أيضاً

The diffusion system with time-fractional order derivative is of great importance mathematically due to the nonlocal property of the fractional order derivative, which can be applied to model the physical phenomena with memory effects. We consider an initial-boundary value problem for the time-fractional diffusion equation with inhomogenous Robin boundary condition. Firstly, we show the unique existence of the weak/strong solution based on the eigenfunction expansions, which ensures the well-posedness of the direct problem. Then, we establish the Hopf lemma for time-fractional diffusion operator, generalizing the counterpart for the classical parabolic equation. Based on this new Hopf lemma, the maximum principles for this time-fractional diffusion are finally proven, which play essential roles for further studying the uniqueness of the inverse problems corresponding to this system.
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp ace, it is known from Herrero and Pierre [20] that the Cauchy problem associated with the FDE is well posed for initial data that are merely in $ L^1_{mathrm{loc}} $. We establish here that such data still give rise to global solutions on general Riemannian manifolds. If, in addition, the radial Ricci curvature satisfies a suitable pointwise bound from below (possibly diverging to $-infty$ at spatial infinity), we prove that also uniqueness holds, for the same type of data, in the class of strong solutions. Besides, under the further assumption that the initial datum is in $L^2_{mathrm{loc}}$ and nonnegative, a minimal solution is shown to exist, and we are able to establish uniqueness of purely (nonnegative) distributional solutions, which to our knowledge was not known before even in the Euclidean space. The required curvature bound is in fact sharp, since on model manifolds it turns out to be equivalent to stochastic completeness, and it was shown in [13] that uniqueness for the FDE fails even in the class of bounded solutions on manifolds that are not stochastically complete. Qualitatively this amounts to asking that the curvature diverges at most quadratically at infinity. A crucial ingredient of the uniqueness result is the proof of nonexistence of distributional subsolutions to certain semilinear elliptic equations with power nonlinearities, of independent interest.
388 - Hailiang Liu , Jaemin Shin 2009
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensiv ely, mostly with the zero flux boundary condition. Recently it was illustrated by C. Liu and H. Liu [2008, SIAM J. Appl. Math., 68(5):1304--1315] that any preassigned boundary value of a weighted distribution will become redundant once the non-dimensional parameter $b>2$. In this article, we show that for the well-posedness of the microscopic FENE model ($b>2$) the least boundary requirement is that the distribution near boundary needs to approach zero faster than the distance function. Under this condition, it is shown that there exists a unique weak solution in a weighted Sobolev space. Moreover, such a condition still ensures that the distribution is a probability density. The sharpness of this boundary requirement is shown by a construction of infinitely many solutions when the distribution approaches zero as fast as the distance function.
We study the fourth order Schrodinger equation with mixed dispersion on an $N$-dimensional Cartan-Hadamard manifold. At first, we focus on the case of the hyperbolic space. Using the fact that there exists a Fourier transform on this space, we prove the existence of a global solution to our equation as well as scattering for small initial data. Next, we obtain weighted Strichartz estimates for radial solutions on a large class of rotationally symmetric manifolds by adapting the method of Banica and Duyckaerts (Dyn. Partial Differ. Equ., 07). Finally, we give a blow-up result for a rotationally symmetric manifold relying on a localized virial argument.
64 - Antoine Leblond 2021
We consider the Stokes-transport system, a model for the evolution of an incompressible viscous fluid with inhomogeneous density. This equation was already known to be globally well-posed for any $L^1cap L^infty$ initial density with finite first mom ent in $mathbb{R}^3$. We show that similar results hold on different domain types. We prove that the system is globally well-posed for $L^infty$ initial data in bounded domains of $mathbb{R}^2$ and $mathbb{R}^3$ as well as in the infinite strip $mathbb{R}times(0,1)$. These results contrast with the ill-posedness of a similar problem, the incompressible porous medium equation, for which uniqueness is known to fail for such a density regularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا