ﻻ يوجد ملخص باللغة العربية
The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construct a uniqueness local-in-time solution based on an $L^infty$-estimate and $W^{1,p}$-estimate. In particular, we develop a new iteration scheme along the characteristic with the Cercignani-Lampis boundary for the $L^infty$-estimate, and an intrinsic decomposition of boundary integral for $W^{1,p}$-estimate.
The diffusion system with time-fractional order derivative is of great importance mathematically due to the nonlocal property of the fractional order derivative, which can be applied to model the physical phenomena with memory effects. We consider an
In this paper we show global well-posedness near vacuum for the binary-ternary Boltzmann equation. The binary-ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary inter
We use the dispersive properties of the linear Schr{o}dinger equation to prove local well-posedness results for the Boltzmann equation and the related Boltzmann hierarchy, set in the spatial domain $mathbb{R}^d$ for $dgeq 2$. The proofs are based on
In this paper, we address the local well-posedness of the spatially inhomogeneous non-cutoff Boltzmann equation when the initial data decays polynomially in the velocity variable. We consider the case of very soft potentials $gamma + 2s < 0$. Our mai
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensiv