ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Mattila-Sjolin distance theorem for product sets

89   0   0.0 ( 0 )
 نشر من قبل Thang Pham
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a compact set in $mathbb{R}$, and $E=A^dsubset mathbb{R}^d$. We know from the Mattila-Sjolins theorem if $dim_H(A)>frac{d+1}{2d}$, then the distance set $Delta(E)$ has non-empty interior. In this paper, we show that the threshold $frac{d+1}{2d}$ can be improved whenever $dge 5$.

قيم البحث

اقرأ أيضاً

Hegyvari and Hennecart showed that if $B$ is a sufficiently large brick of a Heisenberg group, then the product set $Bcdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra speci al groups as well as to a large family of quasigroups.
In this paper, we prove a $Tb$ theorem on product spaces $Bbb R^ntimes Bbb R^m$, where $b(x_1,x_2)=b_1(x_1)b_2(x_2)$, $b_1$ and $b_2$ are para-accretive functions on $Bbb R^n$ and $Bbb R^m$, respectively.
Let $phi(x, y)colon mathbb{R}^dtimes mathbb{R}^dto mathbb{R}$ be a function. We say $phi$ is a Mattila--Sj{o}lin type function of index $gamma$ if $gamma$ is the smallest number satisfying the property that for any compact set $Esubset mathbb{R}^d$, $phi(E, E)$ has a non-empty interior whenever $dim_H(E)>gamma$. The usual distance function, $phi(x, y)=|x-y|$, is conjectured to be a Mattila--Sj{o}lin type function of index $frac{d}{2}$. In the setting of finite fields $mathbb{F}_q$, this definition is equivalent to the statement that $phi(E, E)=mathbb{F}_q$ whenever $|E|gg q^{gamma}$. The main purpose of this paper is to prove the existence of such functions with index $frac{d}{2}$ in the vector space $mathbb{F}_q^d$.
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a s phere. We use these incidence bounds to obtain significant improvements on the arithmetic problem of covering ${mathbb F}_q$, the finite field with q elements, by $A cdot A+... +A cdot A$, where A is a subset ${mathbb F}_q$ of sufficiently large size. We also use the incidence machinery we develope and arithmetic constructions to study the Erdos-Falconer distance conjecture in vector spaces over finite fields. We prove that the natural analog of the Euclidean Erdos-Falconer distance conjecture does not hold in this setting due to the influence of the arithmetic. On the positive side, we obtain good exponents for the Erdos -Falconer distance problem for subsets of the unit sphere in $mathbb F_q^d$ and discuss their sharpness. This results in a reasonably complete description of the Erdos-Falconer distance problem in higher dimensional vector spaces over general finite fields.
In this paper, we provide a non-homogeneous $T(1)$ theorem on product spaces $(X_1 times X_2, rho_1 times rho_2, mu_1 times mu_2)$ equipped with a quasimetric $rho_1 times rho_2$ and a Borel measure $mu_1 times mu_2$, which, need not be doubling but satisfies an upper control on the size of quasiballs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا