ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Autoregressive Translation by Learning Target Categorical Codes

117   0   0.0 ( 0 )
 نشر من قبل Yu Bao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-autoregressive Transformer is a promising text generation model. However, current non-autoregressive models still fall behind their autoregressive counterparts in translation quality. We attribute this accuracy gap to the lack of dependency modeling among decoder inputs. In this paper, we propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding. The interaction among these categorical codes remedies the missing dependencies and improves the model capacity. Experiment results show that our model achieves comparable or better performance in machine translation tasks, compared with several strong baselines.



قيم البحث

اقرأ أيضاً

327 - Jongyoon Song , Sungwon Kim , 2021
Non-autoregressive neural machine translation (NART) models suffer from the multi-modality problem which causes translation inconsistency such as token repetition. Most recent approaches have attempted to solve this problem by implicitly modeling dep endencies between outputs. In this paper, we introduce AligNART, which leverages full alignment information to explicitly reduce the modality of the target distribution. AligNART divides the machine translation task into $(i)$ alignment estimation and $(ii)$ translation with aligned decoder inputs, guiding the decoder to focus on simplified one-to-one translation. To alleviate the alignment estimation problem, we further propose a novel alignment decomposition method. Our experiments show that AligNART outperforms previous non-iterative NART models that focus on explicit modality reduction on WMT14 En$leftrightarrow$De and WMT16 Ro$rightarrow$En. Furthermore, AligNART achieves BLEU scores comparable to those of the state-of-the-art connectionist temporal classification based models on WMT14 En$leftrightarrow$De. We also observe that AligNART effectively addresses the token repetition problem even without sequence-level knowledge distillation.
426 - Yu Bao , Hao Zhou , Jiangtao Feng 2019
Non-autoregressive models are promising on various text generation tasks. Previous work hardly considers to explicitly model the positions of generated words. However, position modeling is an essential problem in non-autoregressive text generation. I n this study, we propose PNAT, which incorporates positions as a latent variable into the text generative process. Experimental results show that PNAT achieves top results on machine translation and paraphrase generation tasks, outperforming several strong baselines.
136 - Jinglin Liu , Yi Ren , Xu Tan 2020
Non-autoregressive translation (NAT) achieves faster inference speed but at the cost of worse accuracy compared with autoregressive translation (AT). Since AT and NAT can share model structure and AT is an easier task than NAT due to the explicit dep endency on previous target-side tokens, a natural idea is to gradually shift the model training from the easier AT task to the harder NAT task. To smooth the shift from AT training to NAT training, in this paper, we introduce semi-autoregressive translation (SAT) as intermediate tasks. SAT contains a hyperparameter k, and each k value defines a SAT task with different degrees of parallelism. Specially, SAT covers AT and NAT as its special cases: it reduces to AT when k = 1 and to NAT when k = N (N is the length of target sentence). We design curriculum schedules to gradually shift k from 1 to N, with different pacing functions and number of tasks trained at the same time. We called our method as task-level curriculum learning for NAT (TCL-NAT). Experiments on IWSLT14 De-En, IWSLT16 En-De, WMT14 En-De and De-En datasets show that TCL-NAT achieves significant accuracy improvements over previous NAT baselines and reduces the performance gap between NAT and AT models to 1-2 BLEU points, demonstrating the effectiveness of our proposed method.
Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy. The common practice to tackle the problem is transferring the Autoregressive machine Translation (AT) k nowledge to NAT models, e.g., with knowledge distillation. In this work, we hypothesize and empirically verify that AT and NAT encoders capture different linguistic properties of source sentences. Therefore, we propose to adopt Multi-Task learning to transfer the AT knowledge to NAT models through encoder sharing. Specifically, we take the AT model as an auxiliary task to enhance NAT model performance. Experimental results on WMT14 English-German and WMT16 English-Romanian datasets show that the proposed Multi-Task NAT achieves significant improvements over the baseline NAT models. Furthermore, the performance on large-scale WMT19 and WMT20 English-German datasets confirm the consistency of our proposed method. In addition, experimental results demonstrate that our Multi-Task NAT is complementary to knowledge distillation, the standard knowledge transfer method for NAT.
86 - Yiren Wang , Fei Tian , Di He 2019
As a new neural machine translation approach, Non-Autoregressive machine Translation (NAT) has attracted attention recently due to its high efficiency in inference. However, the high efficiency has come at the cost of not capturing the sequential dep endency on the target side of translation, which causes NAT to suffer from two kinds of translation errors: 1) repeated translations (due to indistinguishable adjacent decoder hidden states), and 2) incomplete translations (due to incomplete transfer of source side information via the decoder hidden states). In this paper, we propose to address these two problems by improving the quality of decoder hidden representations via two auxiliary regularization terms in the training process of an NAT model. First, to make the hidden states more distinguishable, we regularize the similarity between consecutive hidden states based on the corresponding target tokens. Second, to force the hidden states to contain all the information in the source sentence, we leverage the dual nature of translation tasks (e.g., English to German and German to English) and minimize a backward reconstruction error to ensure that the hidden states of the NAT decoder are able to recover the source side sentence. Extensive experiments conducted on several benchmark datasets show that both regularization strategies are effective and can alleviate the issues of repeated translations and incomplete translations in NAT models. The accuracy of NAT models is therefore improved significantly over the state-of-the-art NAT models with even better efficiency for inference.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا