ﻻ يوجد ملخص باللغة العربية
As a new neural machine translation approach, Non-Autoregressive machine Translation (NAT) has attracted attention recently due to its high efficiency in inference. However, the high efficiency has come at the cost of not capturing the sequential dependency on the target side of translation, which causes NAT to suffer from two kinds of translation errors: 1) repeated translations (due to indistinguishable adjacent decoder hidden states), and 2) incomplete translations (due to incomplete transfer of source side information via the decoder hidden states). In this paper, we propose to address these two problems by improving the quality of decoder hidden representations via two auxiliary regularization terms in the training process of an NAT model. First, to make the hidden states more distinguishable, we regularize the similarity between consecutive hidden states based on the corresponding target tokens. Second, to force the hidden states to contain all the information in the source sentence, we leverage the dual nature of translation tasks (e.g., English to German and German to English) and minimize a backward reconstruction error to ensure that the hidden states of the NAT decoder are able to recover the source side sentence. Extensive experiments conducted on several benchmark datasets show that both regularization strategies are effective and can alleviate the issues of repeated translations and incomplete translations in NAT models. The accuracy of NAT models is therefore improved significantly over the state-of-the-art NAT models with even better efficiency for inference.
This paper presents two strong methods, CTC and Imputer, for non-autoregressive machine translation that model latent alignments with dynamic programming. We revisit CTC for machine translation and demonstrate that a simple CTC model can achieve stat
State-of-the-art neural machine translation models generate a translation from left to right and every step is conditioned on the previously generated tokens. The sequential nature of this generation process causes fundamental latency in inference si
Non-autoregressive translation (NAT) achieves faster inference speed but at the cost of worse accuracy compared with autoregressive translation (AT). Since AT and NAT can share model structure and AT is an easier task than NAT due to the explicit dep
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding pa
Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy. The common practice to tackle the problem is transferring the Autoregressive machine Translation (AT) k