ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Active Learning for Video-based Person Re-identification

88   0   0.0 ( 0 )
 نشر من قبل Menglin Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.



قيم البحث

اقرأ أيضاً

Video-based person re-identification (re-ID) is an important research topic in computer vision. The key to tackling the challenging task is to exploit both spatial and temporal clues in video sequences. In this work, we propose a novel graph-based fr amework, namely Multi-Granular Hypergraph (MGH), to pursue better representational capabilities by modeling spatiotemporal dependencies in terms of multiple granularities. Specifically, hypergraphs with different spatial granularities are constructed using various levels of part-based features across the video sequence. In each hypergraph, different temporal granularities are captured by hyperedges that connect a set of graph nodes (i.e., part-based features) across different temporal ranges. Two critical issues (misalignment and occlusion) are explicitly addressed by the proposed hypergraph propagation and feature aggregation schemes. Finally, we further enhance the overall video representation by learning more diversified graph-level representations of multiple granularities based on mutual information minimization. Extensive experiments on three widely adopted benchmarks clearly demonstrate the effectiveness of the proposed framework. Notably, 90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts. Code is available at https://github.com/daodaofr/hypergraph_reid.
Recently, the Transformer module has been transplanted from natural language processing to computer vision. This paper applies the Transformer to video-based person re-identification, where the key issue is to extract the discriminative information f rom a tracklet. We show that, despite the strong learning ability, the vanilla Transformer suffers from an increased risk of over-fitting, arguably due to a large number of attention parameters and insufficient training data. To solve this problem, we propose a novel pipeline where the model is pre-trained on a set of synthesized video data and then transferred to the downstream domains with the perception-constrained Spatiotemporal Transformer (STT) module and Global Transformer (GT) module. The derived algorithm achieves significant accuracy gain on three popular video-based person re-identification benchmarks, MARS, DukeMTMC-VideoReID, and LS-VID, especially when the training and testing data are from different domains. More importantly, our research sheds light on the application of the Transformer on highly-structured visual data.
This paper proposes a Temporal Complementary Learning Network that extracts complementary features of consecutive video frames for video person re-identification. Firstly, we introduce a Temporal Saliency Erasing (TSE) module including a saliency era sing operation and a series of ordered learners. Specifically, for a specific frame of a video, the saliency erasing operation drives the specific learner to mine new and complementary parts by erasing the parts activated by previous frames. Such that the diverse visual features can be discovered for consecutive frames and finally form an integral characteristic of the target identity. Furthermore, a Temporal Saliency Boosting (TSB) module is designed to propagate the salient information among video frames to enhance the salient feature. It is complementary to TSE by effectively alleviating the information loss caused by the erasing operation of TSE. Extensive experiments show our method performs favorably against state-of-the-arts. The source code is available at https://github.com/blue-blue272/VideoReID-TCLNet.
255 - Jinjie You , Ancong Wu , Xiang Li 2016
Most existing person re-identification (re-id) models focus on matching still person images across disjoint camera views. Since only limited information can be exploited from still images, it is hard (if not impossible) to overcome the occlusion, pos e and camera-view change, and lighting variation problems. In comparison, video-based re-id methods can utilize extra space-time information, which contains much more rich cues for matching to overcome the mentioned problems. However, we find that when using video-based representation, some inter-class difference can be much more obscure than the one when using still-image based representation, because different people could not only have similar appearance but also have similar motions and actions which are hard to align. To solve this problem, we propose a top-push distance learning model (TDL), in which we integrate a top-push constrain for matching video features of persons. The top-push constraint enforces the optimization on top-rank matching in re-id, so as to make the matching model more effective towards selecting more discriminative features to distinguish different persons. Our experiments show that the proposed video-based re-id framework outperforms the state-of-the-art video-based re-id methods.
Video-based person re-identification (Re-ID) aims to automatically retrieve video sequences of the same person under non-overlapping cameras. To achieve this goal, it is the key to fully utilize abundant spatial and temporal cues in videos. Existing methods usually focus on the most conspicuous image regions, thus they may easily miss out fine-grained clues due to the person varieties in image sequences. To address above issues, in this paper, we propose a novel Global-guided Reciprocal Learning (GRL) framework for video-based person Re-ID. Specifically, we first propose a Global-guided Correlation Estimation (GCE) to generate feature correlation maps of local features and global features, which help to localize the high- and low-correlation regions for identifying the same person. After that, the discriminative features are disentangled into high-correlation features and low-correlation features under the guidance of the global representations. Moreover, a novel Temporal Reciprocal Learning (TRL) mechanism is designed to sequentially enhance the high-correlation semantic information and accumulate the low-correlation sub-critical clues. Extensive experiments are conducted on three public benchmarks. The experimental results indicate that our approach can achieve better performance than other state-of-the-art approaches. The code is released at https://github.com/flysnowtiger/GRL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا