ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependency Graph-to-String Statistical Machine Translation

203   0   0.0 ( 0 )
 نشر من قبل Liangyou Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present graph-based translation models which translate source graphs into target strings. Source graphs are constructed from dependency trees with extra links so that non-syntactic phrases are connected. Inspired by phrase-based models, we first introduce a translation model which segments a graph into a sequence of disjoint subgraphs and generates a translation by combining subgraph translations left-to-right using beam search. However, similar to phrase-based models, this model is weak at phrase reordering. Therefore, we further introduce a model based on a synchronous node replacement grammar which learns recursive translation rules. We provide two implementations of the model with different restrictions so that source graphs can be parsed efficiently. Experiments on Chinese--English and German--English show that our graph-based models are significantly better than corresponding sequence- and tree-based baselines.



قيم البحث

اقرأ أيضاً

We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translatio n task resulted in an improved BLEU score when compared to a syntax-agnostic NMT baseline trained on the same dataset. An analysis of the translations from the syntax-aware system shows that it performs more reordering during translation in comparison to the baseline. A small-scale human evaluation also showed an advantage to the syntax-aware system.
99 - Sufeng Duan , Hai Zhao , Rui Wang 2020
Neural machine translation (NMT) usually works in a seq2seq learning way by viewing either source or target sentence as a linear sequence of words, which can be regarded as a special case of graph, taking words in the sequence as nodes and relationsh ips between words as edges. In the light of the current NMT models more or less capture graph information among the sequence in a latent way, we present a graph-to-sequence model facilitating explicit graph information capturing. In detail, we propose a graph-based SAN-based NMT model called Graph-Transformer by capturing information of subgraphs of different orders in every layers. Subgraphs are put into different groups according to their orders, and every group of subgraphs respectively reflect different levels of dependency between words. For fusing subgraph representations, we empirically explore three methods which weight different groups of subgraphs of different orders. Results of experiments on WMT14 English-German and IWSLT14 German-English show that our method can effectively boost the Transformer with an improvement of 1.1 BLEU points on WMT14 English-German dataset and 1.0 BLEU points on IWSLT14 German-English dataset.
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole do cument as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English--French, Chinese-English, WMT English--German and Opensubtitle English--Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains th at each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit model on the current data. In this paper, we propose a non-linear modeling for the quality of translation hypotheses based on neural networks, which allows more complex interaction between features. A learning framework is presented for training the non-linear models. We also discuss possible heuristics in designing the network structure which may improve the non-linear learning performance. Experimental results show that with the basic features of a hierarchical phrase-based machine translation system, our method produce translations that are better than a linear model.
We present a new approach to encourage neural machine translation to satisfy lexical constraints. Our method acts at the training step and thereby avoiding the introduction of any extra computational overhead at inference step. The proposed method co mbines three main ingredients. The first one consists in augmenting the training data to specify the constraints. Intuitively, this encourages the model to learn a copy behavior when it encounters constraint terms. Compared to previous work, we use a simplified augmentation strategy without source factors. The second ingredient is constraint token masking, which makes it even easier for the model to learn the copy behavior and generalize better. The third one, is a modification of the standard cross entropy loss to bias the model towards assigning high probabilities to constraint words. Empirical results show that our method improves upon related baselines in terms of both BLEU score and the percentage of generated constraint terms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا