ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental space-division multiplexed polarization entanglement distribution through a 19-path multicore fiber

167   0   0.0 ( 0 )
 نشر من قبل Evelyn Ortega
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development and wide application of quantum technologies highly depend on the capacity of the communication channels distributing entanglement. Space-division multiplexing (SDM) enhanced channel capacities in classical telecommunication and bears the potential to transfer the idea to quantum communication using current infrastructure. Here, we demonstrate an SDM of polarization-entangled photons over a 411m long 19-core multicore fiber distributing polarization-entangled photon pairs through up to 12 channels simultaneously. The quality of the multiplexed transfer is evidenced by high polarization visibility and CHSH Bell inequality violation for each pair of opposite cores. Our distribution scheme shows high stability over 24 hours without any active polarization stabilization and can be effortlessly adapted to a higher number of channels. This technique increases the quantum-channel capacity and allows the reliable implementation of quantum networks of multiple users based on a single entangled-photon pair source.

قيم البحث

اقرأ أيضاً

The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer - or communication - of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.
Quantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
In state-of-the-art quantum key distribution (QKD) systems, the main limiting factor in increasing the key generation rate is the timing resolution in detecting photons. Here, we present and experimentally demonstrate a strategy to overcome this limi tation, also for high-loss and long-distance implementations. We exploit the intrinsic wavelength correlations of entangled photons using wavelength multiplexing to generate a quantum secure key from polarization entanglement. The presented approach can be integrated into both fiber- and satellite-based quantum-communication schemes, without any changes to most types of entanglement sources. This technique features a huge scaling potential allowing to increase the secure key rate by several orders of magnitude as compared to non-multiplexed schemes.
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advant age of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all fiber quantum network.
Photonic quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled pho ton sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement which supersedes the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform localized product-state measurements on the central node acting as a trigger. This experiment proves that the inherent indistinguishability of identical particles supplies new standards for feasible quantum communication in multinode photonic quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا