ﻻ يوجد ملخص باللغة العربية
Hyperspectral image (HSI) with narrow spectral bands can capture rich spectral information, but it sacrifices its spatial resolution in the process. Many machine-learning-based HSI super-resolution (SR) algorithms have been proposed recently. However, one of the fundamental limitations of these approaches is that they are highly dependent on image and camera settings and can only learn to map an input HSI with one specific setting to an output HSI with another. However, different cameras capture images with different spectral response functions and bands numbers due to the diversity of HSI cameras. Consequently, the existing machine-learning-based approaches fail to learn to super-resolve HSIs for a wide variety of input-output band settings. We propose a single Meta-Learning-Based Super-Resolution (MLSR) model, which can take in HSI images at an arbitrary number of input bands peak wavelengths and generate SR HSIs with an arbitrary number of output bands peak wavelengths. We leverage NTIRE2020 and ICVL datasets to train and validate the performance of the MLSR model. The results show that the single proposed model can successfully generate super-resolved HSI bands at arbitrary input-output band settings. The results are better or at least comparable to baselines that are separately trained on a specific input-output band setting.
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling fact
Hyperspectral image has become increasingly crucial due to its abundant spectral information. However, It has poor spatial resolution with the limitation of the current imaging mechanism. Nowadays, many convolutional neural networks have been propose
Recently, satellites with high temporal resolution have fostered wide attention in various practical applications. Due to limitations of bandwidth and hardware cost, however, the spatial resolution of such satellites is considerably low, largely limi
Recently, deep convolutional neural networks (CNNs) have obtained promising results in image processing tasks including super-resolution (SR). However, most CNN-based SR methods treat low-resolution (LR) inputs and features equally across channels, r
Traditional single image super-resolution (SISR) methods that focus on solving single and uniform degradation (i.e., bicubic down-sampling), typically suffer from poor performance when applied into real-world low-resolution (LR) images due to the com