ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Remote Sensing Super-Resolution via Migration Image Prior

82   0   0.0 ( 0 )
 نشر من قبل Xiao Huang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, satellites with high temporal resolution have fostered wide attention in various practical applications. Due to limitations of bandwidth and hardware cost, however, the spatial resolution of such satellites is considerably low, largely limiting their potentials in scenarios that require spatially explicit information. To improve image resolution, numerous approaches based on training low-high resolution pairs have been proposed to address the super-resolution (SR) task. Despite their success, however, low/high spatial resolution pairs are usually difficult to obtain in satellites with a high temporal resolution, making such approaches in SR impractical to use. In this paper, we proposed a new unsupervised learning framework, called MIP, which achieves SR tasks without low/high resolution image pairs. First, random noise maps are fed into a designed generative adversarial network (GAN) for reconstruction. Then, the proposed method converts the reference image to latent space as the migration image prior. Finally, we update the input noise via an implicit method, and further transfer the texture and structured information from the reference image. Extensive experimental results on the Draper dataset show that MIP achieves significant improvements over state-of-the-art methods both quantitatively and qualitatively. The proposed MIP is open-sourced at http://github.com/jiaming-wang/MIP.

قيم البحث

اقرأ أيضاً

91 - Jun Gu , Guangluan Xu , Yue Zhang 2018
Recently, deep convolutional neural networks (CNNs) have obtained promising results in image processing tasks including super-resolution (SR). However, most CNN-based SR methods treat low-resolution (LR) inputs and features equally across channels, r arely notice the loss of information flow caused by the activation function and fail to leverage the representation ability of CNNs. In this letter, we propose a novel single-image super-resolution (SISR) algorithm named Wider Channel Attention Network (WCAN) for remote sensing images. Firstly, the channel attention mechanism is used to adaptively recalibrate the importance of each channel at the middle of the wider attention block (WAB). Secondly, we propose the Local Memory Connection (LMC) to enhance the information flow. Finally, the features within each WAB are fused to take advantage of the networks representation capability and further improve information and gradient flow. Analytic experiments on a public remote sensing data set (UC Merced) show that our WCAN achieves better accuracy and visual improvements against most state-of-the-art methods.
Existing remote sensing change detection methods are heavily affected by seasonal variation. Since vegetation colors are different between winter and summer, such variations are inclined to be falsely detected as changes. In this letter, we proposed an image translation method to solve the problem. A style-based recalibration module is introduced to capture seasonal features effectively. Then, a new style discriminator is designed to improve the translation performance. The discriminator can not only produce a decision for the fake or real sample, but also return a style vector according to the channel-wise correlations. Extensive experiments are conducted on season-varying dataset. The experimental results show that the proposed method can effectively perform image translation, thereby consistently improving the season-varying image change detection performance. Our codes and data are available at https://github.com/summitgao/RSIT_SRM_ISD.
174 - Daoyu Lin , Kun Fu , Yang Wang 2016
With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling fact ors, e.g., 8$times$. We propose a reference based image super-resolution, for which any arbitrary image can act as a reference for super-resolution. Even using random map or low-resolution image itself, the proposed RefVAE can transfer the knowledge from the reference to the super-resolved images. Depending upon different references, the proposed method can generate differe
While the researches on single image super-resolution (SISR), especially equipped with deep neural networks (DNNs), have achieved tremendous successes recently, they still suffer from two major limitations. Firstly, the real image degradation is usua lly unknown and highly variant from one to another, making it extremely hard to train a single model to handle the general SISR task. Secondly, most of current methods mainly focus on the downsampling process of the degradation, but ignore or underestimate the inevitable noise contamination. For example, the commonly-used independent and identically distributed (i.i.d.) Gaussian noise distribution always largely deviates from the real image noise (e.g., camera sensor noise), which limits their performance in real scenarios. To address these issues, this paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations. Instead of the traditional i.i.d. Gaussian noise assumption, a novel patch-based non-i.i.d. noise modeling method is proposed to fit the complex real noise. Besides, a deep generator parameterized by a DNN is used to map the latent variable to the high-resolution image, and the conventional hyper-Laplacian prior is also elaborately embedded into such generator to further constrain the image gradients. Finally, a Monte Carlo EM algorithm is designed to solve our model, which provides a general inference framework to update the image generator both w.r.t. the latent variable and the network parameters. Comprehensive experiments demonstrate that the proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا