ﻻ يوجد ملخص باللغة العربية
Traditional single image super-resolution (SISR) methods that focus on solving single and uniform degradation (i.e., bicubic down-sampling), typically suffer from poor performance when applied into real-world low-resolution (LR) images due to the complicated realistic degradations. The key to solving this more challenging real image super-resolution (RealSR) problem lies in learning feature representations that are both informative and content-aware. In this paper, we propose an Omni-frequency Region-adaptive Network (ORNet) to address both challenges, here we call features of all low, middle and high frequencies omni-frequency features. Specifically, we start from the frequency perspective and design a Frequency Decomposition (FD) module to separate different frequency components to comprehensively compensate the information lost for real LR image. Then, considering the different regions of real LR image have different frequency information lost, we further design a Region-adaptive Frequency Aggregation (RFA) module by leveraging dynamic convolution and spatial attention to adaptively restore frequency components for different regions. The extensive experiments endorse the effective, and scenario-agnostic nature of our OR-Net for RealSR.
Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to h
Deep neural networks have achieved remarkable success in single image super-resolution (SISR). The computing and memory requirements of these methods have hindered their application to broad classes of real devices with limited computing power, howev
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling fact
Single image super-resolution (SISR) aims to recover the high-resolution (HR) image from its low-resolution (LR) input image. With the development of deep learning, SISR has achieved great progress. However, It is still a challenge to restore the rea
Recent deep-learning based Super-Resolution (SR) methods have achieved remarkable performance on images with known degradation. However, these methods always fail in real-world scene, since the Low-Resolution (LR) images after the ideal degradation (