ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust and Scalable Routing with Multi-Agent Deep Reinforcement Learning for MANETs

184   0   0.0 ( 0 )
 نشر من قبل Saeed Kaviani
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly dynamic mobile ad-hoc networks (MANETs) are continuing to serve as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing which, in a novel manner, integrates emerging multi-agent deep reinforcement learning (MADRL) techniques into existing Q-learning-based routing protocols and their variants, and achieves persistently higher performance across a wide range of MANET configurations while training only on a limited range of network parameters and conditions. Quantitatively, DeepCQ+ shows consistently higher end-to-end throughput with lower overhead compared to its Q-learning-based counterparts with the overall gain of 10-15% in its efficiency. Qualitatively and more significantly, DeepCQ+ maintains remarkably similar performance gains under many scenarios that it was not trained for in terms of network sizes, mobility conditions, and traffic dynamics. To the best of our knowledge, this is the first successful demonstration of MADRL for the MANET routing problem that achieves and maintains a high degree of scalability and robustness even in the environments that are outside the trained range of scenarios. This implies that the proposed hybrid design approach of DeepCQ+ that combines MADRL and Q-learning significantly increases its practicality and explainability because the real-world MANET environment will likely vary outside the trained range of MANET scenarios.



قيم البحث

اقرأ أيضاً

It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues due to the fact that the size of the state and action spaces are exponentially large in the number of agents. In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner. Specifically, we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal localized policy for optimizing the average reward with complexity scaling with the state-action space size of local neighborhoods, as opposed to the entire network. Our result centers around identifying and exploiting an exponential decay property that ensures the effect of agents on each other decays exponentially fast in their graph distance.
137 - Wei Cui , Wei Yu 2020
This paper proposes a novel scalable reinforcement learning approach for simultaneous routing and spectrum access in wireless ad-hoc networks. In most previous works on reinforcement learning for network optimization, the network topology is assumed to be fixed, and a different agent is trained for each transmission node -- this limits scalability and generalizability. Further, routing and spectrum access are typically treated as separate tasks. Moreover, the optimization objective is usually a cumulative metric along the route, e.g., number of hops or delay. In this paper, we account for the physical-layer signal-to-interference-plus-noise ratio (SINR) in a wireless network and further show that bottleneck objective such as the minimum SINR along the route can also be optimized effectively using reinforcement learning. Specifically, we propose a scalable approach in which a single agent is associated with each flow and makes routing and spectrum access decisions as it moves along the frontier nodes. The agent is trained according to the physical-layer characteristics of the environment using a novel rewarding scheme based on the Monte Carlo estimation of the future bottleneck SINR. It learns to avoid interference by intelligently making joint routing and spectrum allocation decisions based on the geographical location information of the neighbouring nodes.
303 - Guannan Qu , Adam Wierman , Na Li 2019
We study reinforcement learning (RL) in a setting with a network of agents whose states and actions interact in a local manner where the objective is to find localized policies such that the (discounted) global reward is maximized. A fundamental chal lenge in this setting is that the state-action space size scales exponentially in the number of agents, rendering the problem intractable for large networks. In this paper, we propose a Scalable Actor-Critic (SAC) framework that exploits the network structure and finds a localized policy that is a $O(rho^kappa)$-approximation of a stationary point of the objective for some $rhoin(0,1)$, with complexity that scales with the local state-action space size of the largest $kappa$-hop neighborhood of the network.
Existing evaluation suites for multi-agent reinforcement learning (MARL) do not assess generalization to novel situations as their primary objective (unlike supervised-learning benchmarks). Our contribution, Melting Pot, is a MARL evaluation suite th at fills this gap, and uses reinforcement learning to reduce the human labor required to create novel test scenarios. This works because one agents behavior constitutes (part of) another agents environment. To demonstrate scalability, we have created over 80 unique test scenarios covering a broad range of research topics such as social dilemmas, reciprocity, resource sharing, and task partitioning. We apply these test scenarios to standard MARL training algorithms, and demonstrate how Melting Pot reveals weaknesses not apparent from training performance alone.
This paper develops an efficient multi-agent deep reinforcement learning algorithm for cooperative controls in powergrids. Specifically, we consider the decentralized inverter-based secondary voltage control problem in distributed generators (DGs), w hich is first formulated as a cooperative multi-agent reinforcement learning (MARL) problem. We then propose a novel on-policy MARL algorithm, PowerNet, in which each agent (DG) learns a control policy based on (sub-)global reward but local states from its neighboring agents. Motivated by the fact that a local control from one agent has limited impact on agents distant from it, we exploit a novel spatial discount factor to reduce the effect from remote agents, to expedite the training process and improve scalability. Furthermore, a differentiable, learning-based communication protocol is employed to foster the collaborations among neighboring agents. In addition, to mitigate the effects of system uncertainty and random noise introduced during on-policy learning, we utilize an action smoothing factor to stabilize the policy execution. To facilitate training and evaluation, we develop PGSim, an efficient, high-fidelity powergrid simulation platform. Experimental results in two microgrid setups show that the developed PowerNet outperforms a conventional model-based control, as well as several state-of-the-art MARL algorithms. The decentralized learning scheme and high sample efficiency also make it viable to large-scale power grids.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا