ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating Document Coherence Modelling

172   0   0.0 ( 0 )
 نشر من قبل Aili Shen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While pretrained language models (LM) have driven impressive gains over morpho-syntactic and semantic tasks, their ability to model discourse and pragmatic phenomena is less clear. As a step towards a better understanding of their discourse modelling capabilities, we propose a sentence intrusion detection task. We examine the performance of a broad range of pretrained LMs on this detection task for English. Lacking a dataset for the task, we introduce INSteD, a novel intruder sentence detection dataset, containing 170,000+ documents constructed from English Wikipedia and CNN news articles. Our experiments show that pretrained LMs perform impressively in in-domain evaluation, but experience a substantial drop in the cross-domain setting, indicating limited generalisation capacity. Further results over a novel linguistic probe dataset show that there is substantial room for improvement, especially in the cross-domain setting.

قيم البحث

اقرأ أيضاً

Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses.
Coreference resolution and semantic role labeling are NLP tasks that capture different aspects of semantics, indicating respectively, which expressions refer to the same entity, and what semantic roles expressions serve in the sentence. However, they are often closely interdependent, and both generally necessitate natural language understanding. Do they form a coherent abstract representation of documents? We present a neural network architecture for joint coreference resolution and semantic role labeling for English, and train graph neural networks to model the coherence of the combined shallow semantic graph. Using the resulting coherence score as a reward for our joint semantic analyzer, we use reinforcement learning to encourage global coherence over the document and between semantic annotations. This leads to improvements on both tasks in multiple datasets from different domains, and across a range of encoders of different expressivity, calling, we believe, for a more holistic approach to semantics in NLP.
We present a novel and effective technique for performing text coherence tasks while facilitating deeper insights into the data. Despite obtaining ever-increasing task performance, modern deep-learning approaches to NLP tasks often only provide users with the final network decision and no additional understanding of the data. In this work, we show that a new type of sentence embedding learned through self-supervision can be applied effectively to text coherence tasks while serving as a window through which deeper understanding of the data can be obtained. To produce these sentence embeddings, we train a recurrent neural network to take individual sentences and predict their location in a document in the form of a distribution over locations. We demonstrate that these embeddings, combined with simple visual heuristics, can be used to achieve performance competitive with state-of-the-art on multiple text coherence tasks, outperforming more complex and specialized approaches. Additionally, we demonstrate that these embeddings can provide insights useful to writers for improving writing quality and informing document structuring, and assisting readers in summarizing and locating information.
Two main approaches for evaluating the quality of machine-generated rationales are: 1) using human rationales as a gold standard; and 2) automated metrics based on how rationales affect model behavior. An open question, however, is how human rational es fare with these automatic metrics. Analyzing a variety of datasets and models, we find that human rationales do not necessarily perform well on these metrics. To unpack this finding, we propose improved metrics to account for model-dependent baseline performance. We then propose two methods to further characterize rationale quality, one based on model retraining and one on using fidelity curves to reveal properties such as irrelevance and redundancy. Our work leads to actionable suggestions for evaluating and characterizing rationales.
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our systems generated summaries. Data and models are available at https://github.com/allenai/ms2

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا