ﻻ يوجد ملخص باللغة العربية
Inelastic scattering experiments are key methods for mapping the full dispersion of fundamental excitations of solids in the ground as well as non-equilibrium states. A quantitative analysis of inelastic scattering in terms of phonon excitations requires identifying the role of multi-phonon processes. Here, we develop an efficient first-principles methodology for calculating the {it all-phonon} quantum mechanical structure factor of solids. We demonstrate our method by obtaining unprecedented agreement between measurements and calculations of the diffuse diffraction patterns of black phosphorus, showing that multi-phonon scattering plays a substantial role. The present approach constitutes a pivotal advancement in the interpretation of static and time-resolved electron, X-ray, and neutron inelastic scattering data.
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles in
Time-resolved diffuse scattering experiments have gained increasing attention due to their potential to reveal non-equilibrium dynamics of crystal lattice vibrations with full momentum resolution. Although progress has been made in interpreting exper
An accurate and easily extendable method to deal with lattice dynamics of solids is offered. It is based on first-principles molecular dynamics simulations and provides a consistent way to extract the best possible harmonic - or higher order - potent
Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-princi
We have carried out an extensive phonon study on multiferroic GaFeO3 to elucidate its dynamical behavior. Inelastic neutron scattering measurements are performed over a wide temperature range, 150 to 1198 K. First principles lattice dynamical calcula