ﻻ يوجد ملخص باللغة العربية
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles inputs. The present method extends existing polar and non-polar electron-phonon coupling, ionized impurity, and piezoelectric scattering mechanisms formulated for isotropic band structures to support highly anisotropic materials. We test the formalism by calculating the electronic transport properties of 16 semiconductors and comparing the results against experimental measurements. The present work is amenable for use in high-throughput computational workflows and enables accurate screening of carrier mobilities, lifetimes, and thermoelectric power.
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous w
Efficient ab initio computational methods for the calculation of thermoelectric transport properties of materials are of great avail for energy harvesting technologies. The BoltzTraP code has been largely used to efficiently calculate thermoelectric
Identification and design of defects in two-dimensional (2D) materials as promising single photon emitters (SPE) requires a deep understanding of underlying carrier recombination mechanisms. Yet, the dominant mechanism of carrier recombination at def
Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in
Inelastic scattering experiments are key methods for mapping the full dispersion of fundamental excitations of solids in the ground as well as non-equilibrium states. A quantitative analysis of inelastic scattering in terms of phonon excitations requ