ﻻ يوجد ملخص باللغة العربية
An emph{additive $+beta$ spanner} of a graph $G$ is a subgraph which preserves distances up to an additive $+beta$ error. Additive spanners are well-studied in unweighted graphs but have only recently received attention in weighted graphs [Elkin et al. 2019 and 2020, Ahmed et al. 2020]. This paper makes two new contributions to the theory of weighted additive spanners. For weighted graphs, [Ahmed et al. 2020] provided constructions of sparse spanners with emph{global} error $beta = cW$, where $W$ is the maximum edge weight in $G$ and $c$ is constant. We improve these to emph{local} error by giving spanners with additive error $+cW(s,t)$ for each vertex pair $(s,t)$, where $W(s, t)$ is the maximum edge weight along the shortest $s$--$t$ path in $G$. These include pairwise $+(2+eps)W(cdot,cdot)$ and $+(6+eps) W(cdot, cdot)$ spanners over vertex pairs $Pc subseteq V times V$ on $O_{eps}(n|Pc|^{1/3})$ and $O_{eps}(n|Pc|^{1/4})$ edges for all $eps > 0$, which extend previously known unweighted results up to $eps$ dependence, as well as an all-pairs $+4W(cdot,cdot)$ spanner on $widetilde{O}(n^{7/5})$ edges. Besides sparsity, another natural way to measure the quality of a spanner in weighted graphs is by its emph{lightness}, defined as the total edge weight of the spanner divided by the weight of an MST of $G$. We provide a $+eps W(cdot,cdot)$ spanner with $O_{eps}(n)$ lightness, and a $+(4+eps) W(cdot,cdot)$ spanner with $O_{eps}(n^{2/3})$ lightness. These are the first known additive spanners with nontrivial lightness guarantees. All of the above spanners can be constructed in polynomial time.
A emph{spanner} of a graph $G$ is a subgraph $H$ that approximately preserves shortest path distances in $G$. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions
Given a graph $G = (V,E)$, a subgraph $H$ is an emph{additive $+beta$ spanner} if $dist_H(u,v) le dist_G(u,v) + beta$ for all $u, v in V$. A emph{pairwise spanner} is a spanner for which the above inequality only must hold for specific pairs $P subse
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as diff
We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph $G$, the goal is to construct a straight-line drawing $Gamma$ of $G$ in the plane such that, for any two vertices $u$ and $v$ of $G$, the ratio bet
Different graph generalizations have been recently used in an ad-hoc manner to represent multilayer networks, i.e. systems formed by distinct layers where each layer can be seen as a network. Similar constructions have also been used to represent tim