ﻻ يوجد ملخص باللغة العربية
We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph $G$, the goal is to construct a straight-line drawing $Gamma$ of $G$ in the plane such that, for any two vertices $u$ and $v$ of $G$, the ratio between the minimum length of any path from $u$ to $v$ and the Euclidean distance between $u$ and $v$ is small. The maximum such ratio, over all pairs of vertices of $G$, is the spanning ratio of $Gamma$. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio $1$, a proper straight-line drawing with spanning ratio $1$, and a planar straight-line drawing with spanning ratio $1$ are NP-complete, $exists mathbb R$-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio $1$ to spanning ratio $1+epsilon$ allows us to draw every graph. Namely, we prove that, for every $epsilon>0$, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than $1+epsilon$. Third, our drawings with spanning ratio smaller than $1+epsilon$ have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio.
Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize o
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known
It is well known that any graph admits a crossing-free straight-line drawing in $mathbb{R}^3$ and that any planar graph admits the same even in $mathbb{R}^2$. For a graph $G$ and $d in {2,3}$, let $rho^1_d(G)$ denote the minimum number of lines in $m
Consider a unit interval $[0,1]$ in which $n$ points arrive one-by-one independently and uniformly at random. On arrival of a point, the problem is to immediately and irrevocably color it in ${+1,-1}$ while ensuring that every interval $[a,b] subsete
In the Metric Capacitated Covering (MCC) problem, given a set of balls $mathcal{B}$ in a metric space $P$ with metric $d$ and a capacity parameter $U$, the goal is to find a minimum sized subset $mathcal{B}subseteq mathcal{B}$ and an assignment of th