ﻻ يوجد ملخص باللغة العربية
The last two decades witnessed the increasing of the interests on the absolute value equations (AVE) of finding $xinmathbb{R}^n$ such that $Ax-|x|-b=0$, where $Ain mathbb{R}^{ntimes n}$ and $bin mathbb{R}^n$. In this paper, we pay our attention on designing efficient algorithms. To this end, we reformulate AVE to a generalized linear complementarity problem (GLCP), which, among the equivalent forms, is the most economical one in the sense that it does not increase the dimension of the variables. For solving the GLCP, we propose an inexact Douglas-Rachford splitting method which can adopt a relative error tolerance. As a consequence, in the inner iteration processes, we can employ the LSQR method ([C.C. Paige and M.A. Saunders, ACM Trans. Mathe. Softw. (TOMS), 8 (1982), pp. 43--71]) to find a qualified approximate solution for each subproblem, which makes the cost per iteration very low. We prove the convergence of the algorithm and establish its global linear rate of convergence. Comparing results with the popular algorithms such as the exact generalized Newton method [O.L. Mangasarian, Optim. Lett., 1 (2007), pp. 3--8], the inexact semi-smooth Newton method [J.Y.B. Cruz, O.P. Ferreira and L.F. Prudente, Comput. Optim. Appl., 65 (2016), pp. 93--108] and the exact SOR-like method [Y.-F. Ke and C.-F. Ma, Appl. Math. Comput., 311 (2017), pp. 195--202] are reported, which indicate that the proposed algorithm is very promising. Moreover, our method also extends the range of numerically solvable of the AVE; that is, it can deal with not only the case that $|A^{-1}|<1$, the commonly used in those existing literature, but also the case where $|A^{-1}|=1$.
In Wang et al. (J. Optim. Theory Appl., textbf{181}: 216--230, 2019), a class of effective modified Newton-tpye (MN) iteration methods are proposed for solving the generalized absolute value equations (GAVE) and it has been found that the MN iteratio
The alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a s
The SOR-like iteration method for solving the absolute value equations~(AVE) of finding a vector $x$ such that $Ax - |x| - b = 0$ with $ u = |A^{-1}|_2 < 1$ is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke a
The Peaceman-Rachford splitting method is efficient for minimizing a convex optimization problem with a separable objective function and linear constraints. However, its convergence was not guaranteed without extra requirements. He et al. (SIAM J. Op
Douglas-Rachford splitting and its equivalent dual formulation ADMM are widely used iterative methods in composite optimization problems arising in control and machine learning applications. The performance of these algorithms depends on the choice o