ترغب بنشر مسار تعليمي؟ اضغط هنا

Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

87   0   0.0 ( 0 )
 نشر من قبل Bailin Deng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a solution of high-accuracy. Previously, Anderson acceleration has been applied to ADMM, by treating it as a fixed-point iteration for the concatenation of the dual variables and a subset of the primal variables. In this paper, we note that the equivalence between ADMM and Douglas-Rachford splitting reveals that ADMM is in fact a fixed-point iteration in a lower-dimensional space. By applying Anderson acceleration to such lower-dimensional fixed-point iteration, we obtain a more effective approach for accelerating ADMM. We analyze the convergence of the proposed acceleration method on nonconvex problems, and verify its effectiveness on a variety of computer graphics problems including geometry processing and physical simulation.



قيم البحث

اقرأ أيضاً

We develop two new algorithms, called, FedDR and asyncFedDR, for solving a fundamental nonconvex composite optimization problem in federated learning. Our algorithms rely on a novel combination between a nonconvex Douglas-Rachford splitting method, r andomized block-coordinate strategies, and asynchronous implementation. They can also handle convex regularizers. Unlike recent methods in the literature, e.g., FedSplit and FedPD, our algorithms update only a subset of users at each communication round, and possibly in an asynchronous manner, making them more practical. These new algorithms also achieve communication efficiency and more importantly can handle statistical and system heterogeneity, which are the two main challenges in federated learning. Our convergence analysis shows that the new algorithms match the communication complexity lower bound up to a constant factor under standard assumptions. Our numerical experiments illustrate the advantages of our methods compared to existing ones on several datasets.
The last two decades witnessed the increasing of the interests on the absolute value equations (AVE) of finding $xinmathbb{R}^n$ such that $Ax-|x|-b=0$, where $Ain mathbb{R}^{ntimes n}$ and $bin mathbb{R}^n$. In this paper, we pay our attention on de signing efficient algorithms. To this end, we reformulate AVE to a generalized linear complementarity problem (GLCP), which, among the equivalent forms, is the most economical one in the sense that it does not increase the dimension of the variables. For solving the GLCP, we propose an inexact Douglas-Rachford splitting method which can adopt a relative error tolerance. As a consequence, in the inner iteration processes, we can employ the LSQR method ([C.C. Paige and M.A. Saunders, ACM Trans. Mathe. Softw. (TOMS), 8 (1982), pp. 43--71]) to find a qualified approximate solution for each subproblem, which makes the cost per iteration very low. We prove the convergence of the algorithm and establish its global linear rate of convergence. Comparing results with the popular algorithms such as the exact generalized Newton method [O.L. Mangasarian, Optim. Lett., 1 (2007), pp. 3--8], the inexact semi-smooth Newton method [J.Y.B. Cruz, O.P. Ferreira and L.F. Prudente, Comput. Optim. Appl., 65 (2016), pp. 93--108] and the exact SOR-like method [Y.-F. Ke and C.-F. Ma, Appl. Math. Comput., 311 (2017), pp. 195--202] are reported, which indicate that the proposed algorithm is very promising. Moreover, our method also extends the range of numerically solvable of the AVE; that is, it can deal with not only the case that $|A^{-1}|<1$, the commonly used in those existing literature, but also the case where $|A^{-1}|=1$.
Douglas-Rachford splitting and its equivalent dual formulation ADMM are widely used iterative methods in composite optimization problems arising in control and machine learning applications. The performance of these algorithms depends on the choice o f step size parameters, for which the optimal values are known in some specific cases, and otherwise are set heuristically. We provide a new unified method of convergence analysis and parameter selection by interpreting the algorithm as a linear dynamical system with nonlinear feedback. This approach allows us to derive a dimensionally independent matrix inequality whose feasibility is sufficient for the algorithm to converge at a specified rate. By analyzing this inequality, we are able to give performance guarantees and parameter settings of the algorithm under a variety of assumptions regarding the convexity and smoothness of the objective function. In particular, our framework enables us to obtain a new and simple proof of the O(1/k) convergence rate of the algorithm when the objective function is not strongly convex.
Many large-scale and distributed optimization problems can be brought into a composite form in which the objective function is given by the sum of a smooth term and a nonsmooth regularizer. Such problems can be solved via a proximal gradient method a nd its variants, thereby generalizing gradient descent to a nonsmooth setup. In this paper, we view proximal algorithms as dynamical systems and leverage techniques from control theory to study their global properties. In particular, for problems with strongly convex objective functions, we utilize the theory of integral quadratic constraints to prove the global exponential stability of the equilibrium points of the differential equations that govern the evolution of proximal gradient and Douglas-Rachford splitting flows. In our analysis, we use the fact that these algorithms can be interpreted as variable-metric gradient methods on the suitable envelopes and exploit structural properties of the nonlinear terms that arise from the gradient of the smooth part of the objective function and the proximal operator associated with the nonsmooth regularizer. We also demonstrate that these envelopes can be obtained from the augmented Lagrangian associated with the original nonsmooth problem and establish conditions for global exponential convergence even in the absence of strong convexity.
146 - Yan Gu , Bo Jiang , Deren Han 2015
The Peaceman-Rachford splitting method is efficient for minimizing a convex optimization problem with a separable objective function and linear constraints. However, its convergence was not guaranteed without extra requirements. He et al. (SIAM J. Op tim. 24: 1011 - 1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford splitting method by employing a suitable underdetermined relaxation factor. In this paper, we further extend the so-called strictly contractive Peaceman-Rachford splitting method by using two different relaxation factors. Besides, motivated by the recent advances on the ADMM type method with indefinite proximal terms, we employ the indefinite proximal term in the strictly contractive Peaceman-Rachford splitting method. We show that the proposed indefinite-proximal strictly contractive Peaceman-Rachford splitting method is convergent and also prove the $o(1/t)$ convergence rate in the nonergodic sense. The numerical tests on the $l_1$ regularized least square problem demonstrate the efficiency of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا