ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations

97   0   0.0 ( 0 )
 نشر من قبل Cairong Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The SOR-like iteration method for solving the absolute value equations~(AVE) of finding a vector $x$ such that $Ax - |x| - b = 0$ with $ u = |A^{-1}|_2 < 1$ is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma ([{em Appl. Math. Comput.}, 311:195--202, 2017]) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes $|T_ u(omega)|_2$ with $$T_ u(omega) = left(begin{array}{cc} |1-omega| & omega^2 u |1-omega| & |1-omega| +omega^2 u end{array}right)$$ and the approximate optimal parameter which minimizes $eta_{ u}(omega) =max{|1-omega|, uomega^2}$ are explored. The optimal and approximate optimal parameters are iteration-independent and the bigger value of $ u$ is, the smaller convergent region of the iteration parameter $omega$ is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo, Wu and Li ([{em Appl. Math. Lett.}, 97:107--113, 2019]). In some situation, the SOR-like itration method with the optimal parameter performs better, in terms of CPU time, than the generalized Newton method (Mangasarian, [{em Optim. Lett.}, 3:101--108, 2009]) for solving the AVE.



قيم البحث

اقرأ أيضاً

In Wang et al. (J. Optim. Theory Appl., textbf{181}: 216--230, 2019), a class of effective modified Newton-tpye (MN) iteration methods are proposed for solving the generalized absolute value equations (GAVE) and it has been found that the MN iteratio n method involves the classical Picard iteration method as a special case. In the present paper, it will be claimed that a Douglas-Rachford splitting method for AVE is also a special case of the MN method. In addition, a class of inexact MN (IMN) iteration methods are developed to solve GAVE. Linear convergence of the IMN method is established and some specific sufficient conditions are presented for symmetric positive definite coefficient matrix. Numerical results are given to demonstrate the efficiency of the IMN iteration method.
The last two decades witnessed the increasing of the interests on the absolute value equations (AVE) of finding $xinmathbb{R}^n$ such that $Ax-|x|-b=0$, where $Ain mathbb{R}^{ntimes n}$ and $bin mathbb{R}^n$. In this paper, we pay our attention on de signing efficient algorithms. To this end, we reformulate AVE to a generalized linear complementarity problem (GLCP), which, among the equivalent forms, is the most economical one in the sense that it does not increase the dimension of the variables. For solving the GLCP, we propose an inexact Douglas-Rachford splitting method which can adopt a relative error tolerance. As a consequence, in the inner iteration processes, we can employ the LSQR method ([C.C. Paige and M.A. Saunders, ACM Trans. Mathe. Softw. (TOMS), 8 (1982), pp. 43--71]) to find a qualified approximate solution for each subproblem, which makes the cost per iteration very low. We prove the convergence of the algorithm and establish its global linear rate of convergence. Comparing results with the popular algorithms such as the exact generalized Newton method [O.L. Mangasarian, Optim. Lett., 1 (2007), pp. 3--8], the inexact semi-smooth Newton method [J.Y.B. Cruz, O.P. Ferreira and L.F. Prudente, Comput. Optim. Appl., 65 (2016), pp. 93--108] and the exact SOR-like method [Y.-F. Ke and C.-F. Ma, Appl. Math. Comput., 311 (2017), pp. 195--202] are reported, which indicate that the proposed algorithm is very promising. Moreover, our method also extends the range of numerically solvable of the AVE; that is, it can deal with not only the case that $|A^{-1}|<1$, the commonly used in those existing literature, but also the case where $|A^{-1}|=1$.
300 - Xiaobing Feng , Yan Luo , Liet Vo 2021
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more gene ral and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.
107 - Quanhui Zhu , Jiang Yang 2021
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high ord er derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives.
The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing textcolor{black}{regular solutions} of viscous G-equations in incompressible stea dy and time-periodic cellular flows. Our method is based on the Galerkin proper orthogonal decomposition (POD) method. To facilitate the algorithm design and convergence analysis, we decompose the solution of the viscous G-equation into a mean-free part and a mean part, where their evolution equations can be derived accordingly. We construct the POD basis from the solution snapshots of the mean-free part. With the POD basis, we can efficiently solve the evolution equation for the mean-free part of the solution to the viscous G-equation. After we get the mean-free part of the solution, the mean of the solution can be recovered. We also provide rigorous convergence analysis for our method. Numerical results for textcolor{black}{viscous G-equations and curvature G-equations} are presented to demonstrate the accuracy and efficiency of the proposed method. In addition, we study the turbulent flame speeds of the viscous G-equations in incompressible cellular flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا