ﻻ يوجد ملخص باللغة العربية
Anomalous Hall effect (AHE) is the key transport signature unlocking topological properties of magnetic materials. While AHE is usually proportional to the magnetization, the nonlinearity suggests the existence of complex magnetic and electron orders. Nonlinear AHE includes the topological Hall effect (THE) that has been widely used to identify the presence of spin chirality in real space. But it can in principle be induced by band structure evolution via Berry curvatures in the reciprocal space. This effect has been largely overlooked due to the intertwined mechanisms in both real and reciprocal spaces. Here, we observed a giant nonlinear AHE with the resistivity up to 383.5 uohm cm, contributing unprecedentedly 97% of the total Hall response in EuCd2As2. Moreover, it can be further enhanced by tilting the magnetic field 30{deg} away from [001] direction, reaching a large anomalous Hall angle up to 21%. Although it shows exactly the same double-peak feature as THE, our scaling analysis and first-principles calculations reveal that the Berry phase is extremely sensitive to the spin canting, and nonlinear AHE is a consequence of band structure evolution under the external magnetic fields. When the spins gradually tilt from the in-plane antiferromagnetic ground state to out-of-plane direction, band crossing and band inversion occur, introducing a bandgap at {Gamma} point at a canting angle of 45{deg}. That contributes to the enhancement of Berry curvature and consequently a large intrinsic Hall conductivity. Our results unequivocally reveal the sensitive dependence of band structures on spin tilting process under external magnetic fields and its pronounced influence on the transport properties, which also need to be taken into consideration in other magnetic materials.
The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnet
The combination of topology and magnetism is attractive to produce exotic quantum matters, such as the quantum anomalous Hall state, axion insulators and the magnetic Weyl semimetals. MnBi2Te4, as an intrinsic magnetic topological insulator, provides
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resis
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied
Antiferromagnetic (AFM) spintronics exploits the Neel vector as a state variable for novel spintronic devices. Recent studies have shown that the field-like and antidamping spin-orbit torques (SOT) can be used to switch the Neel vector in antiferroma