ﻻ يوجد ملخص باللغة العربية
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film. The Hall conductivity and Hall angle respectively reach 40,000 {Omega}-1cm-1 and 18 % in the ferromagnetic region, exceeding the conventional limits of AHE of intrinsic and extrinsic origins, respectively. A possible origin of the large AHE is attributed to a new type of skew-scattering via thermally-excited spin-clusters with scalar spin chirality, which is corroborated by the temperature-magnetic-field profile of the AHE being sensitive to the film-thickness or magneto-crystalline anisotropy. Our results may open up a new platform to explore giant AHE responses in various systems, including frustrated magnets and thin-film heterostructures.
Spin-1 chiral semimetal is a new state of quantum matter hosting unconventional chiral fermions that extend beyond the common Dirac and Weyl fermions. B20-type CoSi is a prototypal material that accommodates such an exotic quasiparticle. To date, the
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate Co3Sn2S2 with a quasi-two-dimensiona
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
Anomalous Hall effect (AHE) is the key transport signature unlocking topological properties of magnetic materials. While AHE is usually proportional to the magnetization, the nonlinearity suggests the existence of complex magnetic and electron orders
One of the most exciting properties of two dimensional materials is their sensitivity to external tuning of the electronic properties, for example via electric field or strain. Recently discovered analogues of phosphorene, group-IV monochalcogenides