ترغب بنشر مسار تعليمي؟ اضغط هنا

An optical clock based on a topological attractor in the polariton superfluid dynamics

96   0   0.0 ( 0 )
 نشر من قبل Yan Xue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xuemei Sun




اسأل ChatGPT حول البحث

We propose an optical polariton clock based on the topologically protected persistent oscillatory dynamics of a polariton superfluid, which is excited non-resonantly by a super-Gaussian laser beam in a semiconductor microcavity containing an external C-shape potential. The persistent oscillations, characterised by a topological attractor, are based on the dynamical behavior of small Josephson vortices rotating around the edge of the core of the central vortex. The clock demonstrates a remarkable stability towards perturbations and may be tuned by the pump laser intensity to two different frequency ranges: 20.16{pm}0.14 GHz and 48.4{pm}1.2 GHz. This clock generator is bistable due to the chirality of the vortex.



قيم البحث

اقرأ أيضاً

We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers. The crossover from the supersonic to subsonic regime, where motion is frictionless, is described by evaluating the Bogoliubov spectra. We show tha t according to the Landau criteria, the coupling between the two components precludes the existence of superfluidity just for one component but not for the other. By analysing the drag force exerted on a defect, we give a recipe to experimentally address the crossover from the supersonic to the subsonic regime.
The drag of half-light half-mater quasiparticles, exciton-polaritons, by an electric current is a peculiar mechanism of light-matter interaction in solids. While an ideal superfluid is protected from being dragged by its zero viscosity, here we argue that the state of the superfluid polariton condensate formed by a non-resonant optical pumping can be controlled by the electric current. The proposed mechanism is based on the stimulated relaxation of moving uncondensed excitons dragged by the electric current. The stimulated relaxation process favors the formation of a moving condensate in a quantum state that is characterised by the lowest condensation threshold. We also show that the electron-mediated inelastic scattering of the reservoir excitons to the condensate leads to the transfer of a non-zero mean momentum to the electron gas thus contributing to the electric current. We predict the generation of circular electric currents in a micropillar cavity in the presence of a nonresonant laser pumping at normal incidence.
Integrated circuits of photonic components are the goal of applied polaritonics. Here, we propose a compact clock generator based on an exciton-polariton micropillar, providing optical signal with modulation frequency up to 100 GHz. This generator ca n be used for driving polariton devices. The clock frequency can be controlled by the driving laser frequency. The device also features low power consumption (1 pJ/pulse).
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have shown to combine the on-chip benefits of optical systems with strong interactions, inherited form their matter character. Technologically significant semiconductor platforms, however, strictly require cryogenic temperatures for operability. In this paper, we demonstrate exciton-polariton lasing for topological defects emerging form the imprinted lattice structure at room temperature. We utilize a monomeric red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. In spectroscopic experiments, we unequivocally demonstrate polariton lasing from these topological defects. This progress promises to be a paradigm shift, paving the road to interacting Boson many-body physics at ambient conditions.
We propose a scenario to create topological superfluid in a periodically driven two-dimensional square optical lattice. We study the phase diagram of a spin-orbit coupled s-wave pairing superfluid in a periodically driven two-dimensional square optic al lattice. We find that a phase transition from a trivial superfluid to a topological superfluid occurs when the potentials of the optical lattices are periodically changed. The topological phase is called Floquet topological superfluid and can host Majorana fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا