ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo-drag of a polariton superfluid

66   0   0.0 ( 0 )
 نشر من قبل Igor Yu. Chestnov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The drag of half-light half-mater quasiparticles, exciton-polaritons, by an electric current is a peculiar mechanism of light-matter interaction in solids. While an ideal superfluid is protected from being dragged by its zero viscosity, here we argue that the state of the superfluid polariton condensate formed by a non-resonant optical pumping can be controlled by the electric current. The proposed mechanism is based on the stimulated relaxation of moving uncondensed excitons dragged by the electric current. The stimulated relaxation process favors the formation of a moving condensate in a quantum state that is characterised by the lowest condensation threshold. We also show that the electron-mediated inelastic scattering of the reservoir excitons to the condensate leads to the transfer of a non-zero mean momentum to the electron gas thus contributing to the electric current. We predict the generation of circular electric currents in a micropillar cavity in the presence of a nonresonant laser pumping at normal incidence.

قيم البحث

اقرأ أيضاً

We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra in three different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.
We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers. The crossover from the supersonic to subsonic regime, where motion is frictionless, is described by evaluating the Bogoliubov spectra. We show tha t according to the Landau criteria, the coupling between the two components precludes the existence of superfluidity just for one component but not for the other. By analysing the drag force exerted on a defect, we give a recipe to experimentally address the crossover from the supersonic to the subsonic regime.
Open-dissipative systems obeying parity-time ($mathcal{PT}$) symmetry are capable of demonstrating oscillatory dynamics akin to the conservative systems. In contrast to limit cycle solutions characteristic of nonlinear systems, the $mathcal{PT}$-symm etric oscillations form a continuum of non-isolated orbits. However, precise sculpturing of the real potential and the gain-loss spatial profiles required for establishing of the $mathcal{PT}$-symmetry is practically challenging. The optical devices, such as lasers, exhibit relaxation dynamics and do not operate as the $mathcal{PT}$-symmetric systems. Here we demonstrate how these constraints can be overcome. We predict that a pair of optically trapped polariton condensates (a polariton dimer) can be excited and operated in the oscillating regime typical of the isolated systems. This regime can be realized in the presence of both dissipative and conservative coupling between the condensates and can be maintained at an arbitrary external pump intensity. Every orbit is characterised by a frequency comb appearing in the spectrum of a dimer in the presence of the conservative nonlinearity. Our results pave the way for the creation of the optical computing devices operating under the constant-wave external pumping.
Excitons are pairs of electrons and holes bound together by the Coulomb interaction. At low temperatures, excitons can form a Bose-Einstein condensate (BEC), enabling macroscopic phase coherence and superfluidity. An electronic double layer (EDL), in which two parallel conducting layers are separated by an insulator, is an ideal platform to realize a stable exciton BEC. In an EDL under strong magnetic fields, electron-like and hole-like quasi-particles from partially filled Landau levels (LLs) bind into excitons and condense. However, in semiconducting double quantum wells, this magnetic-field-induced exciton BEC has been observed only in sub-Kelvin temperatures due to the relatively strong dielectric screening and large separation of the EDL. Here we report exciton condensation in bilayer graphene EDL separated by a few atomic layers of hexagonal boron nitride (hBN). Driving current in one graphene layer generates a quantized Hall voltage in the other layer, signifying coherent superfluid exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, we find that quantum Hall drag in graphene appears at a temperature an order of magnitude higher than previously observed in GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of BEC across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton superfluidity opens up opportunities to investigate various quantum phases of the exciton BEC and design novel electronic devices based on dissipationless transport.
95 - Xuemei Sun 2021
We propose an optical polariton clock based on the topologically protected persistent oscillatory dynamics of a polariton superfluid, which is excited non-resonantly by a super-Gaussian laser beam in a semiconductor microcavity containing an external C-shape potential. The persistent oscillations, characterised by a topological attractor, are based on the dynamical behavior of small Josephson vortices rotating around the edge of the core of the central vortex. The clock demonstrates a remarkable stability towards perturbations and may be tuned by the pump laser intensity to two different frequency ranges: 20.16{pm}0.14 GHz and 48.4{pm}1.2 GHz. This clock generator is bistable due to the chirality of the vortex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا