ﻻ يوجد ملخص باللغة العربية
In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuv{s}kas theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuv{s}ka-Brezzi (LBB) condition, and the other standard assumptions in Brezzis theory, in a combined abstract norm. The construction suggests to form the latter from individual {it fitted} norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biots equations.
In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complemen
We introduce an adaptive element-based domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are
In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using integral-value degrees of freedom for solving elliptic interface problems. We show that those IFE methods can only achieve suboptimal c
For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSSP) preconditioner as well as the MGSSP iteration method are derived in this paper, which generalize the MSSP pre
In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model wit