ﻻ يوجد ملخص باللغة العربية
In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model with vanished high order derivative terms, which is close to the original PDE model in any order of this small parameter in the whole domain except a negligible transition layer. Based on this reduced forward model, we propose an efficient two step regularization algorithm for solving inverse source problems governed by the original PDE. Convergence rate results are studied for the proposed regularization algorithm, which shows that this simplification will not (asymptotically) decrease the accuracy of the inversion result when the measurement data contains noise. Numerical examples for both forward and inverse problems are given to show the efficiency of the proposed numerical approach.
A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made b
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens
We analyse a PDE system modelling poromechanical processes (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes in the medium. We investigate the well-posedness of
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compr