ﻻ يوجد ملخص باللغة العربية
For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSSP) preconditioner as well as the MGSSP iteration method are derived in this paper, which generalize the MSSP preconditioner and the MSSP iteration method newly developed by Huang and Su (J. Comput. Appl. Math. 2017), respectively. The convergent and semi-convergent analysis of the MGSSP iteration method are presented, and we prove that this method is unconditionally convergent and semi-convergent. In addition, some spectral properties of the preconditioned matrix are carefully analyzed. Numerical results demonstrate the robustness and effectiveness of the MGSSP preconditioner and the MGSSP iteration method, and also illustrate that the MGSSP iteration method outperforms the GSS and GMSS iteration methods, and the MGSSP preconditioner is superior to the shift-splitting (SS), generalized SS (GSS), modified SS (MSS) and generalized MSS (GMSS) preconditioners for the GMRES method for solving the nonsymmetric saddle point problems.
The worst situation in computing the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation associated with an M-matrix occurs when the corresponding linearizing matrix has two very small eigenvalues, one with positive and one with
In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuv{s}kas theory from a small inf-sup condition, similar to the famous Lady
In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complemen
In this paper, we focus on solving a class of constrained non-convex non-concave saddle point problems in a decentralized manner by a group of nodes in a network. Specifically, we assume that each node has access to a summand of a global objective fu
We provide a systematic way to design computable bilinear forms which, on the class of subspaces $W^* subseteq V$ that can be obtained by duality from a given finite dimensional subspace $W$ of an Hilbert space $V$, are spectrally equivalent to the s