ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent colocation of HPC workloads

116   0   0.0 ( 0 )
 نشر من قبل Felippe Vieira Zacarias
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many HPC applications suffer from a bottleneck in the shared caches, instruction execution units, I/O or memory bandwidth, even though the remaining resources may be underutilized. It is hard for developers and runtime systems to ensure that all critical resources are fully exploited by a single application, so an attractive technique for increasing HPC system utilization is to colocate multiple applications on the same server. When applications share critical resources, however, contention on shared resources may lead to reduced application performance. In this paper, we show that server efficiency can be improved by first modeling the expected performance degradation of colocated applications based on measured hardware performance counters, and then exploiting the model to determine an optimized mix of colocated applications. This paper presents a new intelligent resource manager and makes the following contributions: (1) a new machine learning model to predict the performance degradation of colocated applications based on hardware counters and (2) an intelligent scheduling scheme deployed on an existing resource manager to enable application co-scheduling with minimum performance degradation. Our results show that our approach achieves performance improvements of 7% (avg) and 12% (max) compared to the standard policy commonly used by existing job managers.

قيم البحث

اقرأ أيضاً

Energy consumption is increasingly becoming a limiting factor to the design of faster large-scale parallel systems, and development of energy-efficient and energy-aware applications is today a relevant issue for HPC code-developer communities. In thi s work we focus on energy performance of the Knights Landing (KNL) Xeon Phi, the latest many-core architecture processor introduced by Intel into the HPC market. We take into account the 64-core Xeon Phi 7230, and analyze its energy performance using both the on-chip MCDRAM and the regular DDR4 system memory as main storage for the application data-domain. As a benchmark application we use a Lattice Boltzmann code heavily optimized for this architecture and implemented using different memory data layouts to store its lattice. We assessthen the energy consumption using different memory data-layouts, kind of memory (DDR4 or MCDRAM) and number of threads per core.
Data engineering is becoming an increasingly important part of scientific discoveries with the adoption of deep learning and machine learning. Data engineering deals with a variety of data formats, storage, data extraction, transformation, and data m ovements. One goal of data engineering is to transform data from original data to vector/matrix/tensor formats accepted by deep learning and machine learning applications. There are many structures such as tables, graphs, and trees to represent data in these data engineering phases. Among them, tables are a versatile and commonly used format to load and process data. In this paper, we present a distributed Python API based on table abstraction for representing and processing data. Unlike existing state-of-the-art data engineering tools written purely in Python, our solution adopts high performance compute kernels in C++, with an in-memory table representation with Cython-based Python bindings. In the core system, we use MPI for distributed memory computations with a data-parallel approach for processing large datasets in HPC clusters.
The increased use of deep learning (DL) in academia, government and industry has, in turn, led to the popularity of on-premise and cloud-hosted deep learning platforms, whose goals are to enable organizations utilize expensive resources effectively, and to share said resources among multiple teams in a fair and effective manner. In this paper, we examine the elastic scaling of Deep Learning (DL) jobs over large-scale training platforms and propose a novel resource allocation strategy for DL training jobs, resulting in improved job run time performance as well as increased cluster utilization. We begin by analyzing DL workloads and exploit the fact that DL jobs can be run with a range of batch sizes without affecting their final accuracy. We formulate an optimization problem that explores a dynamic batch size allocation to individual DL jobs based on their scaling efficiency, when running on multiple nodes. We design a fast dynamic programming based optimizer to solve this problem in real-time to determine jobs that can be scaled up/down, and use this optimizer in an autoscaler to dynamically change the allocated resources and batch sizes of individual DL jobs. We demonstrate empirically that our elastic scaling algorithm can complete up to $approx 2 times$ as many jobs as compared to a strong baseline algorithm that also scales the number of GPUs but does not change the batch size. We also demonstrate that the average completion time with our algorithm is up to $approx 10 times$ faster than that of the baseline.
With the growing complexity of computational and experimental facilities, many scientific researchers are turning to machine learning (ML) techniques to analyze large scale ensemble data. With complexities such as multi-component workflows, heterogen eous machine architectures, parallel file systems, and batch scheduling, care must be taken to facilitate this analysis in a high performance computing (HPC) environment. In this paper, we present Merlin, a workflow framework to enable large ML-friendly ensembles of scientific HPC simulations. By augmenting traditional HPC with distributed compute technologies, Merlin aims to lower the barrier for scientific subject matter experts to incorporate ML into their analysis. In addition to its design, we describe some example applications that Merlin has enabled on leadership-class HPC resources, such as the ML-augmented optimization of nuclear fusion experiments and the calibration of infectious disease models to study the progression of and possible mitigation strategies for COVID-19.
Modern GPU datacenters are critical for delivering Deep Learning (DL) models and services in both the research community and industry. When operating a datacenter, optimization of resource scheduling and management can bring significant financial ben efits. Achieving this goal requires a deep understanding of the job features and user behaviors. We present a comprehensive study about the characteristics of DL jobs and resource management. First, we perform a large-scale analysis of real-world job traces from SenseTime. We uncover some interesting conclusions from the perspectives of clusters, jobs and users, which can facilitate the cluster system designs. Second, we introduce a general-purpose framework, which manages resources based on historical data. As case studies, we design: a Quasi-Shortest-Service-First scheduling service, which can minimize the cluster-wide average job completion time by up to 6.5x; and a Cluster Energy Saving service, which improves overall cluster utilization by up to 13%.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا