ترغب بنشر مسار تعليمي؟ اضغط هنا

Gumbel-Attention for Multi-modal Machine Translation

76   0   0.0 ( 0 )
 نشر من قبل Pengbo Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-modal machine translation (MMT) improves translation quality by introducing visual information. However, the existing MMT model ignores the problem that the image will bring information irrelevant to the text, causing much noise to the model and affecting the translation quality. In this paper, we propose a novel Gumbel-Attention for multi-modal machine translation, which selects the text-related parts of the image features. Specifically, different from the previous attention-based method, we first use a differentiable method to select the image information and automatically remove the useless parts of the image features. Through the score matrix of Gumbel-Attention and image features, the image-aware text representation is generated. And then, we independently encode the text representation and the image-aware text representation with the multi-modal encoder. Finally, the final output of the encoder is obtained through multi-modal gated fusion. Experiments and case analysis proves that our method retains the image features related to the text, and the remaining parts help the MMT model generates better translations.



قيم البحث

اقرأ أيضاً

Multi-modal machine translation aims at translating the source sentence into a different language in the presence of the paired image. Previous work suggests that additional visual information only provides dispensable help to translation, which is n eeded in several very special cases such as translating ambiguous words. To make better use of visual information, this work presents visual agreement regularized training. The proposed approach jointly trains the source-to-target and target-to-source translation models and encourages them to share the same focus on the visual information when generating semantically equivalent visual words (e.g. ball in English and ballon in French). Besides, a simple yet effective multi-head co-attention model is also introduced to capture interactions between visual and textual features. The results show that our approaches can outperform competitive baselines by a large margin on the Multi30k dataset. Further analysis demonstrates that the proposed regularized training can effectively improve the agreement of attention on the image, leading to better use of visual information.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of d ifferent modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
167 - Kaitao Song , Xu Tan , Furong Peng 2018
The encoder-decoder is the typical framework for Neural Machine Translation (NMT), and different structures have been developed for improving the translation performance. Transformer is one of the most promising structures, which can leverage the sel f-attention mechanism to capture the semantic dependency from global view. However, it cannot distinguish the relative position of different tokens very well, such as the tokens located at the left or right of the current token, and cannot focus on the local information around the current token either. To alleviate these problems, we propose a novel attention mechanism named Hybrid Self-Attention Network (HySAN) which accommodates some specific-designed masks for self-attention network to extract various semantic, such as the global/local information, the left/right part context. Finally, a squeeze gate is introduced to combine different kinds of SANs for fusion. Experimental results on three machine translation tasks show that our proposed framework outperforms the Transformer baseline significantly and achieves superior results over state-of-the-art NMT systems.
In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and Kadar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).
Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sent ence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILks adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا