ﻻ يوجد ملخص باللغة العربية
We introduce the concept of group state transfer on graphs, summarize its relationship to other concepts in the theory of quantum walks, set up a basic theory, and discuss examples. Let $X$ be a graph with adjacency matrix $A$ and consider quantum walks on the vertex set $V(X)$ governed by the continuous time-dependent unitary transition operator $U(t)= exp(itA)$. For $S,Tsubseteq V(X)$, we says $X$ admits group state transfer from $S$ to $T$ at time $tau$ if the submatrix of $U(tau)$ obtained by restricting to columns in $S$ and rows not in $T$ is the all-zero matrix. As a generalization of perfect state transfer, fractional revival and periodicity, group state transfer satisfies natural monotonicity and transitivity properties. Yet non-trivial group state transfer is still rare; using a compactness argument, we prove that bijective group state transfer (the optimal case where $|S|=|T|$) is absent for almost all $t$. Focusing on this bijective case, we obtain a structure theorem, prove that bijective group state transfer is monogamous, and study the relationship between the projections of $S$ and $T$ into each eigenspace of the graph. Group state transfer is obviously preserved by graph automorphisms and this gives us information about the relationship between the setwise stabilizer of $Ssubseteq V(X)$ and the stabilizers of naturally defined subsets obtained by spreading $S$ out over time and crudely reversing this process. These operations are sufficiently well-behaved to give us a topology on $V(X)$ which is likely to be simply the topology of subsets for which bijective group state transfer occurs at that time. We illustrate non-trivial group state transfer in bipartite graphs with integer eigenvalues, in joins of graphs, and in symmetric double stars. The Cartesian product allows us to build new examples from old ones.
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker.
Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In
We demonstrate that continuous time quantum walks on several types of branching graphs, including graphs with loops, are identical to quantum walks on simpler linear chain graphs. We also show graph types for which such equivalence does not exist. Se
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
We propose a definition for the Polya number of continuous-time quantum walks to characterize their recurrence properties. The definition involves a series of measurements on the system, each carried out on a different member from an ensemble in orde