ﻻ يوجد ملخص باللغة العربية
Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport properties strongly depend on the initial state and on the specific features of the graph under investigation. In this paper, we address the role of graph topology, and investigate the transport properties of graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence, and assume a single trap vertex accountable for the loss processes. In particular, for each graph, we analytically determine the subspace of states having maximum transport efficiency. Our results provide a set of benchmarks for environment-assisted quantum transport, and suggest that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific correlations between transport efficiency and connectivity for certain graphs, but in general they are uncorrelated.
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker.
We introduce the concept of group state transfer on graphs, summarize its relationship to other concepts in the theory of quantum walks, set up a basic theory, and discuss examples. Let $X$ be a graph with adjacency matrix $A$ and consider quantum
We demonstrate that continuous time quantum walks on several types of branching graphs, including graphs with loops, are identical to quantum walks on simpler linear chain graphs. We also show graph types for which such equivalence does not exist. Se
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
We propose a definition for the Polya number of continuous-time quantum walks to characterize their recurrence properties. The definition involves a series of measurements on the system, each carried out on a different member from an ensemble in orde