ﻻ يوجد ملخص باللغة العربية
We propose a definition for the Polya number of continuous-time quantum walks to characterize their recurrence properties. The definition involves a series of measurements on the system, each carried out on a different member from an ensemble in order to minimize the disturbance caused by it. We examine various graphs, including the ring, the line, higher dimensional integer lattices and a number of other graphs and calculate their Polya number. For the timing of the measurements a Poisson process as well as regular timing are discussed. We find that the speed of decay for the probability at the origin is the key for recurrence.
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker.
Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In
We demonstrate that continuous time quantum walks on several types of branching graphs, including graphs with loops, are identical to quantum walks on simpler linear chain graphs. We also show graph types for which such equivalence does not exist. Se
We introduce the concept of group state transfer on graphs, summarize its relationship to other concepts in the theory of quantum walks, set up a basic theory, and discuss examples. Let $X$ be a graph with adjacency matrix $A$ and consider quantum