ﻻ يوجد ملخص باللغة العربية
We discuss the response of biopolymer filament bundles bound by transient cross linkers to compressive loading. These systems admit a mechanical instability at stresses typically below that of traditional Euler buckling. In this instability, there is thermally-activated pair production of topological defects that generate localized regions of bending -- kinks. These kinks shorten the bundles effective length thereby reducing the elastic energy of the mechanically loaded structure. This effect is the thermal analog of the Schwinger effect, in which a sufficiently large electric field causes electron-positron pair production. We discuss this analogy and describe the implications of this analysis for the mechanics of biopolymer filament bundles of various types under compression.
We examine the nonequilibrium production of topological defects -- braids -- in semiflexible filament bundles under cycles of compression and tension. During these cycles, the period of compression facilitates the thermally activated pair production
Bundles of stiff filaments are ubiquitous in the living world, found both in the cytoskeleton and in the extracellular medium. These bundles are typically held together by smaller cross-linking molecules. We demonstrate analytically, numerically and
In this paper, we give formal results of Schwinger pair production correction in thermal systems with external background field by using the evolution operator method of thermo field dynamics, where especially tree level correction of thermal photons
We compute the equilibrium concentration of stacking faults and point defects in polydisperse hard-sphere crystals. We find that, while the concentration of stacking faults remains similar to that of monodisperse hard sphere crystals, the concentrati
We propose a thermal interpretation of the Schwinger effect for charged scalars and spinors in an extremal and near-extremal Reissner-Nordstr{o}m (RN) black hole. The emission of charges has the distribution with an effective temperature determined b