ﻻ يوجد ملخص باللغة العربية
In this paper, we give formal results of Schwinger pair production correction in thermal systems with external background field by using the evolution operator method of thermo field dynamics, where especially tree level correction of thermal photons is considered with linear response approaches by an effective mass shift. We consider initial systems in two types of vacuums as zero temperature and thermal vacuum, respectively, with correction of thermal photons is or not included. As an example we give results of these corrections to pair production for a constant external background electric field.
The density of electron-hole pairs produced in a graphene sample immersed in a homogeneous time-dependent electrical field is evaluated. Because low energy charge carriers in graphene are described by relativistic quantum mechanics, the calculation i
We study Schwinger pair production in scalar QED from a uniform electric field in dS_2 with scalar curvature R_{dS} = 2 H^2 and in AdS_2 with R_{AdS} = - 2 K^2. With suitable boundary conditions, we find that the pair-production rate is the same anal
We study the time-dependent solitonic gauge fields in scalar QED, in which a charged particle has the energy of reflectionless P{o}sch-Teller potential with natural quantum numbers. Solving the quantum master equation for quadratic correlation functi
We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair pr
We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production and the stimulated annihilation from the initial ensemble. It is