ﻻ يوجد ملخص باللغة العربية
Bundles of stiff filaments are ubiquitous in the living world, found both in the cytoskeleton and in the extracellular medium. These bundles are typically held together by smaller cross-linking molecules. We demonstrate analytically, numerically and experimentally that such bundles can be kinked, i.e., have localized regions of high curvature that are long-lived metastable states. We propose three possible mechanisms of kink stabilization: a difference in trapped length of the filament segments between two cross links; a dislocation where the endpoint of a filament occurs within the bundle, and the braiding of the filaments in the bundle. At a high concentration of cross links, the last two effects lead to the topologically protected kinked states. Finally, we explore numerically and analytically the transition of the metastable kinked state to the stable straight bundle.
We use continuum theory to show that chirality is a key thermodynamic control parameter for the aggregation of biopolymers: chirality produces a stable disperse phase of hexagonal bundles under moderately poor solvent conditions, as has been observed
We discuss the response of biopolymer filament bundles bound by transient cross linkers to compressive loading. These systems admit a mechanical instability at stresses typically below that of traditional Euler buckling. In this instability, there is
We examine the nonequilibrium production of topological defects -- braids -- in semiflexible filament bundles under cycles of compression and tension. During these cycles, the period of compression facilitates the thermally activated pair production
Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the development of organisms, orientational order often influences morphogenetic events. However, the linkage between the mechanics of cell monola
We present a Landau type theory for the non-linear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the non-linear elastic behavior of these materials to fiber alignm