ترغب بنشر مسار تعليمي؟ اضغط هنا

Commuting signs of infinity

258   0   0.0 ( 0 )
 نشر من قبل Jens Hoppe
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jens Hoppe




اسأل ChatGPT حول البحث

Discrete minimal surface algebras and Yang Mills algebras may be related to (generalized) Kac Moody algebras, just as Membrane (matrix) models and the IKKT model - including a novel construction technique for minimal surfaces.

قيم البحث

اقرأ أيضاً

We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does no t require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
Sets of commuting charges constructed from the current of a U(1) Kac-Moody algebra are found. There exists a set S_n of such charges for each positive integer n > 1; the corresponding value of the central charge in the Feigin-Fuchs realization of the stress tensor is c = 13-6n-6/n. The charges in each series can be written in terms of the generators of an exceptional W-algebra.
A new infinite-size limit of strings in RxS2 is presented. The limit is obtained from single spike strings by letting by letting the angular velocity parameter omega become infinite. We derive the energy-momenta relation of omega-infinity single spik es as their linear velocity v-->1 and their angular momentum J-->1. Generally, the v-->1, J-->1 limit of single spikes is singular and has to be excluded from the spectrum and be studied separately. We discover that the dispersion relation of omega-infinity single spikes contains logarithms in the limit J-->1. This result is somewhat surprising, since the logarithmic behavior in the string spectra is typically associated with their motion in non-compact spaces such as AdS. Omega-infinity single spikes seem to completely cover the surface of the 2-sphere they occupy, so that they may essentially be viewed as some sort of brany strings. A proof of the sphere-filling property of omega-infinity single spikes is given in the appendix.
Bubbles of nothing are a class of vacuum decay processes present in some theories with compactified extra dimensions. We investigate the existence and properties of bubbles of nothing in models where the scalar pseudomoduli controlling the size of th e extra dimensions are stabilized at positive vacuum energy, which is a necessary feature of any realistic model. We map the construction of bubbles of nothing to a four-dimensional Coleman-De Luccia problem and establish necessary conditions on the asymptotic behavior of the scalar potential for the existence of suitable solutions. We perform detailed analyses in the context of five-dimensional theories with metastable $text{dS}_4 times S^1$ vacua, using analytic approximations and numerical methods to calculate the decay rate. We find that bubbles of nothing sometimes exist in potentials with no ordinary Coleman-De Luccia decay process, and that in the examples we study, when both processes exist, the bubble of nothing decay rate is faster. Our methods can be generalized to other stabilizing potentials and internal manifolds.
We propose a mechanism for confinement: analytic continuation beyond infinite coupling in the space of the coupling constant. The analytic continuation is realized by renormalization group flows from the weak to the strong coupling regime. We demonst rate this mechanism explicitly for the mass gap in two-dimensional sigma models in the large $N$ limit. Our analysis suggests that the conventional analysis of the operator product expansion in itself does not necessarily guarantee the existence of a classical solution corresponding to renormalons. We discuss how the renormalon puzzle may be resolved by the analytic continuation beyond infinite coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا