ترغب بنشر مسار تعليمي؟ اضغط هنا

The Omega-Infinity Limit of Single Spikes

76   0   0.0 ( 0 )
 نشر من قبل Georgios Linardopoulos
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new infinite-size limit of strings in RxS2 is presented. The limit is obtained from single spike strings by letting by letting the angular velocity parameter omega become infinite. We derive the energy-momenta relation of omega-infinity single spikes as their linear velocity v-->1 and their angular momentum J-->1. Generally, the v-->1, J-->1 limit of single spikes is singular and has to be excluded from the spectrum and be studied separately. We discover that the dispersion relation of omega-infinity single spikes contains logarithms in the limit J-->1. This result is somewhat surprising, since the logarithmic behavior in the string spectra is typically associated with their motion in non-compact spaces such as AdS. Omega-infinity single spikes seem to completely cover the surface of the 2-sphere they occupy, so that they may essentially be viewed as some sort of brany strings. A proof of the sphere-filling property of omega-infinity single spikes is given in the appendix.

قيم البحث

اقرأ أيضاً

Perturbations of giant magnons and single spikes in a $2+1$ dimensional $mathbb R times S^2$ background spacetime are analysed. Using the form of the giant magnon solution in the Jevicki-Jin gauge,the well-known Jacobi equation for small normal defor mations of an embedded time-like surface are written down. Surprisingly, this equation reduces to a simple wave equation in a Minkowski background. The finiteness of perturbations and the ensuing stability of such giant magnons under small deformations are then discussed. It turns out that only the zero mode has finite deformations and is stable. Thereafter, we move on to explore the single spike solution in the Jevicki-Jin gauge. We obtain and solve the perturbation equation numerically and address stability issues.
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does no t require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
257 - Jens Hoppe 2021
Discrete minimal surface algebras and Yang Mills algebras may be related to (generalized) Kac Moody algebras, just as Membrane (matrix) models and the IKKT model - including a novel construction technique for minimal surfaces.
125 - Z. G. Huang , H. Q. Lu , W. Fang 2006
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence(DCQ) model in $omega-omega$ plane, which is defined by the equation o f state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_sigmasim-1$, $Omega_sigma=1$. Finally, we find that our model is a tracking one which belongs to freezing type model classified in $omega-omega$ plane.
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_phisim-1$, $Omega_phi=1$, which avoid the Big rip problem and meets the current observations well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا