ﻻ يوجد ملخص باللغة العربية
Bubbles of nothing are a class of vacuum decay processes present in some theories with compactified extra dimensions. We investigate the existence and properties of bubbles of nothing in models where the scalar pseudomoduli controlling the size of the extra dimensions are stabilized at positive vacuum energy, which is a necessary feature of any realistic model. We map the construction of bubbles of nothing to a four-dimensional Coleman-De Luccia problem and establish necessary conditions on the asymptotic behavior of the scalar potential for the existence of suitable solutions. We perform detailed analyses in the context of five-dimensional theories with metastable $text{dS}_4 times S^1$ vacua, using analytic approximations and numerical methods to calculate the decay rate. We find that bubbles of nothing sometimes exist in potentials with no ordinary Coleman-De Luccia decay process, and that in the examples we study, when both processes exist, the bubble of nothing decay rate is faster. Our methods can be generalized to other stabilizing potentials and internal manifolds.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space
Light scalars in inflationary spacetimes suffer from logarithmic infrared divergences at every order in perturbation theory. This corresponds to the scalar field values in different Hubble patches undergoing a random walk of quantum fluctuations, lea
We have found that supersymmetry (SUSY) in curved space is broken softly. It is also found that Pauli-Villars regularization preserves the remaining symmetry, softly broken SUSY. Using it we computed the one-loop effective potential along a (classica
We study M-theory compactification on ${mathbb{T}^7/ mathbb{Z}_2^3}$ in the presence of a seven-flux, metric fluxes and KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose couplings are specified by the $G_2$-s