ﻻ يوجد ملخص باللغة العربية
We investigate the benefits of feature selection, nonlinear modelling and online learning when forecasting in financial time series. We consider the sequential and continual learning sub-genres of online learning. The experiments we conduct show that there is a benefit to online transfer learning, in the form of radial basis function networks, beyond the sequential updating of recursive least-squares models. We show that the radial basis function networks, which make use of clustering algorithms to construct a kernel Gram matrix, are more beneficial than treating each training vector as separate basis functions, as occurs with kernel Ridge regression. We demonstrate quantitative procedures to determine the very structure of the radial basis function networks. Finally, we conduct experiments on the log returns of financial time series and show that the online learning models, particularly the radial basis function networks, are able to outperform a random walk baseline, whereas the offline learning models struggle to do so.
Radial basis function (RBF) network is a third layered neural network that is widely used in function approximation and data classification. Here we propose a quantum model of the RBF network. Similar to the classical case, we still use the radial ba
Topology optimization by optimally distributing materials in a given domain requires gradient-free optimizers to solve highly complicated problems. However, with hundreds of design variables or more involved, solving such problems would require milli
We introduce and investigate matrix approximation by decomposition into a sum of radial basis function (RBF) components. An RBF component is a generalization of the outer product between a pair of vectors, where an RBF function replaces the scalar mu
Emotion recognition (ER) from facial images is one of the landmark tasks in affective computing with major developments in the last decade. Initial efforts on ER relied on handcrafted features that were used to characterize facial images and then fee
The radial basis function (RBF) approach has been used to improve the mass predictions of nuclear models. However, systematic deviations exist between the improved masses and the experimental data for nuclei with different odd-even parities of ($Z$,