ﻻ يوجد ملخص باللغة العربية
The radial basis function (RBF) approach has been used to improve the mass predictions of nuclear models. However, systematic deviations exist between the improved masses and the experimental data for nuclei with different odd-even parities of ($Z$, $N$), i.e., the (even $Z$, even $N$), (even $Z$, odd $N$), (odd $Z$, even $N$), and (odd $Z$, odd $N$). By separately training the RBF for these four different groups, it is found that the systematic odd-even deviations can be cured in a large extend and the predictive power of nuclear mass models can thus be further improved. Moreover, this new approach can better reproduce the single-nucleon separation energies. Based on the latest version of Weizsacker-Skyrme model WS4, the root-mean-square deviation of the improved masses with respect to known data falls to $135$ keV, approaching the chaos-related unpredictability limit ($sim 100$ keV).
A triaxial core rotating around the middle axis, i.e. 2-axis, is cranked around the 1-axis, due to the coupling of an odd proton from a high j orbital. Using the Bargmann representation of a new and complex boson expansion of the angular momentum com
A new interpretation for the wobbling bands in the even-odd Lu isotopes is given within a particle-triaxial rotor semi-classical formalism. While in the previous papers the bands TSD1, TSD2, TSD3 and TSD4 are viewed as the ground, one, two and three
A unitary description for wobbling motion in even-even and even-odd nuclei is presented. In both cases compact formulas for wobbling frequencies are derived. The accuracy of the harmonic approximation is studied for the yrast as well as for the excit
We explore the systematics of odd-even mass staggering with a view to identifying the physical mechanisms responsible. The BCS pairing and mean field contributions have A- and number parity dependencies which can help disentangle the different contri
Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference