ﻻ يوجد ملخص باللغة العربية
The abundance of semiconductors in our smartphones, computers, fiber optic junctions, cars, light sources, photovoltaic and thermoelectric cells results from the possibilities of controlling their properties through doping, lighting, and applying various fields. This paper, a part of the volume celebrating 100 years of the Polish Physical Society, presents a biased selection of worthwhile results obtained by researchers at the Institute of Physics, Polish Academy of Sciences relevant, as seen today, to topological matter and spintronics. Comprehensive studies, combining materials development, experimental investigations, and theoretical description of narrow-gap and dilute-magnetic semiconductors have been especially significant in this context. This survey also emphasizes, in an autobiographical tone, a half of a century of the authors intellectual emotions accompanying the rise of ideas and quantitative theories, allowing identifying the physics behind ongoing and future observations.
In this study we present an alternative approach to separating contributions to the NMR shift originating from the Knight shift and chemical shielding by a combination of experimental solid-state NMR results and ab initio calculations. The chemical a
Electrical control of spin polarization is very desirable in spintronics, since electric field can be easily applied locally in contrast with magnetic field. Here, we propose a new concept of bipolar magnetic semiconductor (BMS) in which completely s
We review many-body effects, their microscopic origin, as well as their impact onto thermoelectricity in correlated narrow-gap semiconductors. Members of this class---such as FeSi and FeSb$_2$---display an unusual temperature dependence in various ob
Using an electric field instead of an electric current (or a magnetic field) to tailor the electronic properties of magnetic materials is promising for realizing ultralow energy-consuming memory devices because of the suppression of Joule heating, es
We present the studies of magnetic properties of Ge/1-x/Cr/x/Te diluted magnetic semiconductor with changeable chemical composition 0.016 leq x leq 0.061. A spin-glass state (at T leq 35 K) for x = 0.016 and 0.025 and a ferromagnetic phase (at T < 60